
Computer Science
Class XI (As per CBSE Board)

Chapter 12
List
&
Sorting Techniques

Termwise
Syllabus
2021-22

It is a collections of items and each item has its own
index value.
Index of first item is 0 and the last item is n-1.Here
n is number of items in a list.

Indexing of list

LIST

Creating a list
Lists are enclosed in square brackets [] and each item is
separated by a comma.
Initializing a list
Passing value in list while declaring list is initializing of a list
e.g.
list1 = [‘English', ‘Hindi', 1997, 2000]
list2 = [11, 22, 33, 44, 55]
list3 = ["a", "b", "c", "d"]
Blank list creation
A list can be created without element
List4=[]

LIST

Access Items From A List
List items can be accessed using its index position.
e.g.
list =[3,5,9]
print(list[0])
print(list[1])
print(list[2])
print('Negative indexing')
print(list[-1])
print(list[-2])
print(list[-3])

output

3
5
9
Negative indexing
9
5
3

LIST

Iterating/Traversing Through A List
List elements can be accessed using looping statement.
e.g.

list =[3,5,9]
for i in range(0, len(list)):

print(list[i])

Output
3
5
9

LIST

Slicing of A List
List elements can be accessed in subparts.

e.g.
list =['I','N','D','I','A']
print(list[0:3])
print(list[3:])
print(list[:])

Output
['I', 'N', 'D']
['I', 'A']
['I', 'N', 'D', 'I', 'A']

LIST

Updating / Manipulating Lists
We can update single or multiple elements of lists by giving
the slice on the left-hand side of the assignment operator.
e.g.
list = ['English', 'Hindi', 1997, 2000]
print ("Value available at index 2 : ", list[2])
list[2:3] = 2001,2002 #list[2]=2001 for single item update
print ("New value available at index 2 : ", list[2])
print ("New value available at index 3 : ", list[3])
Output
('Value available at index 2 : ', 1997)
('New value available at index 2 : ', 2001)
('New value available at index 3 : ', 2002)

LIST

Add Item to A List
append() method is used to add an Item to a List.

e.g.
list=[1,2]
print('list before append', list)
list.append(3)
print('list after append', list)
Output
('list before append', [1, 2])
('list after append', [1, 2, 3])
NOTE :- extend() method can be used to add multiple item at
a time in list.eg - list.extend([3,4])

LIST

Add Item to A List
append() method is used to add an Item to a List.

e.g.
list=[1,2]
print('list before append', list)
list.append(3)
print('list after append', list)
Output
('list before append', [1, 2])
('list after append', [1, 2, 3])

NOTE :- extend() method can be used to add multiple item at
a time in list.eg - list.extend([3,4])

LIST

Add Two Lists
e.g.
list = [1,2]
list2 = [3,4]
list3 = list + list2
print(list3)

OUTPUT
[1,2,3,4]

LIST

Delete Item From A List
e.g.
list=[1,2,3]
print('list before delete', list)
del list [1]
print('list after delete', list)

Output

('list before delete', [1, 2, 3])
('list after delete', [1, 3])

e.g.
del list[0:2] # delete first two items
del list # delete entire list

LIST

Basic List Operations

Python Expression Results Description

len([4, 2, 3]) 3 Length

[4, 2, 3] + [1, 5, 6] [4, 2, 3, 1, 5, 6] Concatenation

[‘cs!'] * 4 ['cs!', 'cs!', 'cs!', 'cs!'] Repetition

3 in [4, 2, 3] True Membership

for x in [4,2,3] :
print (x,end = ' ')

4 2 3 Iteration

LIST

Important methods and functions of List
Function Description
list.append() Add an Item at end of a list
list.extend() Add multiple Items at end of a list
list.insert() insert an Item at a defined index
list.remove() remove an Item from a list
del list[index] Delete an Item from a list
list.clear() empty all the list
list.pop() Remove an Item at a defined index
list.index() Return index of first matched item
list.sort() Sort the items of a list in ascending or descending order
list.reverse() Reverse the items of a list
len(list) Return total length of the list.
max(list) Return item with maximum value in the list.
min(list) Return item with min value in the list.

list(seq) Converts a tuple, string, set, dictionary into list.

Count(element) Counts number of times an element/object in the list

LIST

Some Programs on List
* find the largest/max number in a list #Using sort
a=[]
n=int(input("Enter number of elements:"))
for i in range(1,n+1):

b=int(input("Enter element:"))
a.append(b)

a.sort()
print("Largest element is:",a[n-1])
#using function definition
def max_num_in_list(list):

max = list[0]
for a in list:

if a > max:
max = a

return max
print(max_num_in_list([1, 2, -8, 0]))

list1, list2 = [123, 'xyz', 'zara', 'abc'], [456, 700, 200]
print "Max value element : ", max(list1)
print "Max value element : ", max(list2)
Output
Max value element : zara
Max value element : 700

LIST

Some Programs on List
* find the mean of a list
def Average(lst): #finding mean of a number

return sum(lst) / len(lst)

Driver Code
lst = [15, 9, 55, 41, 35, 20, 62, 49]
average = Average(lst)

Printing average of the list
print("Average of the list =", round(average, 2))

Output
Average of the list = 35.75
Note : The inbuilt function mean() can be used to calculate the mean(average) of
the list.e.g. mean(list)

LIST

Some Programs on List
* Linear Search
list_of_elements = [4, 2, 8, 9, 3, 7]

x = int(input("Enter number to search: "))

found = False

for i in range(len(list_of_elements)):
if(list_of_elements[i] == x):
found = True
print("%d found at %dth position"%(x,i))
break

if(found == False):
print("%d is not in list"%x)

LIST

Some Programs on List
* Frequency of an element in list
import collections
my_list = [101,101,101,101,201,201,201,201]
print("Original List : ",my_list)
ctr = collections.Counter(my_list)
print("Frequency of the elements in the List : ",ctr)

OUTPUT
Original List : [101, 101,101, 101, 201, 201, 201, 201]

Frequency of the elements in the List : Counter({101: 4, 201:4})

NOTE :SAME CAN BE DONE USING COUNT FUNCTION.E.G. lst.count(x)

LIST

SORTING
DEPRECETED FROM
SYLLABUS

process of arranging items systematically
to a comparison operator applied on the

Sorting is
,according
elements.

There are various softing algorithms .Two of
them are-

1. Bubble Sort

2. Insertion Sort

SORTING

1. Bubble Sort-
It is one of the simplest sorting algorithms. The two adjacent
elements of a list are checked and swapped if they are in wrong
order and this process is repeated until the whole list elements
are sorted. The steps of performing a bubble sort are:
1.Compare the first and the second element of the list and swap
them if they are in wrong order.
2.Compare the second and the third element of the list and swap
them if they are in wrong order.
3. Proceed till the last element of the list in a similar fashion.
4. Repeat all of the above steps until the list is sorted.

SORTING

1. Bubble Sort-

SORTING

1. Bubble Sort-Python Program
a = [6, 19, 1, 15, 11, 12, 14]
#repeating loop len(a)(number of elements) number of times
for j in range(len(a)):

#initially swapped is false
swapped = False
i = 0
while i<len(a)-1:

#comparing the adjacent elements
if a[i]>a[i+1]:

#swapping
a[i],a[i+1] = a[i+1],a[i]
#Changing the value of swapped
swapped = True

i = i+1
#if swapped is false then the list is sorted
#we can stop the loop
if swapped == False:

break
print (a)

SORTING

1. Bubble Sort- No of Operation in sorting
In Bubble Sort, n-1 comparisons will be done in the 1st pass, n-2 in 2nd pass, n-3 in 3rd
pass and so on. So the total number of comparisons will be as follows-

Hence time complexity of Bubble Sort is O(n2).
The main advantage of Bubble Sort is the simplicity of the algorithm.
The space complexity for Bubble Sort is O(1), because only a single additional memory
space is required .
Also, the best case time complexity will be O(n),only when the list is already sorted.
Following are the Time and Space complexity for the Bubble Sort algorithm.
Worst Case Time Complexity [Big-O]: O(n2)
Best Case Time Complexity [Big-omega]: O(n)
Average Time Complexity [Big-theta]: O(n2)
Space Complexity: O(1)

SORTING

2. Insertion Sort –
Insertion sort is a simple sorting algorithm .It is just similar the
way we sort playing cards in our hands.

SORTING

2. Insertion Sort – Python Program
list = [19, 12, 13, 15, 6]
for i in range(1, len(list)):

key = list[i]
Move elements of list[0..i-1], that are

greater than key, to one position next
of their current position
j = i-1
while j >=0 and key < list[j] :

list[j+1] = list[j]
j -= 1

list[j+1] = key
print ("Sorted listay is:")
for i in range(len(list)):

print ("%d" %list[i])

SORTING

2. Insertion Sort – No of Operation in sorting
In insertion sort ,to insert the last element at most n-1
comparisons and n-1 movements needed.
To insert the n-1st element n-2 comparisons and n-2 movements
needed.
….
To insert the 2nd element 1 comparison and one movement
needed.
Its sum up is given below:
2* (1 + 2 + 3 +… N - 1) = 2 * (N - 1)* N / 2 = (N-1)*N = Θ (N2)
If the greater part of the array is sorted, the complexity is almost
O(N)
The average complexity is proved to be = Θ (N2)

SORTING

