
Computer Science
Class XI (As per CBSE Board)

Chapter 9
Program
Execution &
Error Handling

New
syllabus
2020-21

Execution/Running a program

the programsGenerally,
developed in high level
language like C, C++, Java
etc.,cannot understand by
the computer . It can
understand only low level

So, the program
in high level
to be converted

language.
written
language
into low level language to
make it understandable for
the computer. This

is performedconversion
using either
Compiler.The
any program

Interpreter or
basic flow of
execution is

shown in diagram.

In python IDLE program is executed from run module option of run menu

Debugging

Debugging means the process of finding errors, finding
reasons of errors and techniques of their fixation.
An error, also known as a bug, is a programming code

from its successfulthat prevents a program
interpretation.
Errors are of three types –
• Compile Time Error
• Run Time Error
• Logical Error

Debugging

Compile time error :

These errors are basically of 2 types –
Syntax Error :Violation of formal rules of a programming
language results in syntax error.
For ex-
len('hello') = 5

File "<stdin>", line 1
SyntaxError: can't assign to function call
Semantics Error: Semantics refers to the set of rules
which sets the meaning of statements. A meaningless
statement results in semantics error.
For ex-
x * y = z

Debugging

Logical Error
If a program is not showing any compile time error or run time
error but not producing desired output, it may be possible that
program is having a logical error.
Some example-
• Use a variable without an initial value.
• Provide wrong parameters to a function
• Use of wrong operator in place of correct operator required for

operation
X=a+b (here – was required in place of + as per requirement

Debugging

Run time Error
These errors are generated during a program execution
due to resource limitation.
Python is having provision of checkpoints to handle
these errors.
For ex-
a=10
b=int(input(“enter a number”))
c=a/b
Value of b to be entered at run time and user may enter 0 at run
time,that may cause run time error,because any number can’t be
devided by 0

Debugging

Run time Error
In Python, try and except clauses are used to handle an
exception/runtime error which is known as exception
handling
try:
code with probability of exception will be written
here.
a=10
b=int(input(“enter a number”))
c=a/b
except:
#code to handle exception will be written here.
print(“devide by zero erro”)

Debugging

Available exception in python

Exception Name Description

IOError This exception generates due to problem in input or output.

NameError This exception generates due to unavailability of an identifier.

IndexError This exception generates when subscript of a sequence is out of range.

ImportError This exception generates due to failing of import statement.

TypeError This exception generates due to wrong type used with an operator or a
function.

ValueError This exception generates due to wrong argument passed to a function.

ZeroDivisionError This exception generates when divisor comes to zero.

OverFlowError This exception generates when result of a mathematical calculation exceeds the
limit.

KeyError This exception generates due to non-availability of key in mapping of dictionary.

FOFError This exception generates when end-of-file condition comes without reading
input of a built in function.

Debugging

In python debugging can be done through
• Print line debugger
• Debugging tool

Debugging

Print line debugger
– At various points in your code, insert print statements that log the
state of the program
• You will probably want to print some strings with some variables
• You could just join things together like this:
>>>x=9
>>>print 'Variable x is equal to ' + str(x)
Output : Variable x is equal to 9
• … but that gets unwieldy pretty quickly
• The format function is much nicer:
>>>x=3
>>>y=4
>>>z=9
>>>print 'x, y, z are equal to {}, {}, {}'.format(x,y,z)
Output : x, y, z are equal to 6, 4, 8

Print line debugger
• Python Debugger: pdb
– insert the following in your program to set a breakpoint
–when your code hits these lines, it’ll stop running and launch an
interactive prompt for you to inspect variables, step through the
program, etc.

import pdb
pdb.set_trace()

n to step to the next line in the current
function s to step into a function
c to continue to the next breakpoint
you can also run any Python command, like in the interpreter

Debugging

Create a.py file with below code and run it in python use n to step
next line.
num_list = [500, 600, 700]
alpha_list = ['x', 'y', 'z']

#debugging code
import pdb
pdb.set_trace()
def nested_loop():

for number in num_list:
print(number)
for letter in alpha_list:

print(letter)

if name == ' main ':
nested_loop()

While executing above code whole program will be traced.
Another way is to invoke the pdb module from the command line.
$ python -m pdVbismity:cpoydteh.opny.mykvs.in for regular updates

Debugging

Debugger tool
Another technique for removing an error is code tracing. In this
technique, lines are to be executed one by one and their effect on
variables is to be observed. Debugging tool or debugger tool is
provided in Python for this.
In Python3.6.5, to make debugger tool available, click on debugger
option in debug menu.

Debugging

Debugger tool
Then, a box will be opened and a message will come saying DEBUG
ON

Debugging

Then, we will open our program from file menu and will run it.

Debugger tool
Then after it will be shown like this in debugger.

Debugging

Click on STEP button for each line execution one by one and result
will be displayed in output window. When we will get wrong
value, we can stop the program there and can correct the code.

