
Computer Science
Class XI (As per CBSE Board)

Chapter 10
Conditional
&
Looping Constructs

New
syllabus
2020-21

Control Statements

Control statements are used to control the
flow of execution depending upon the specified
condition/logic.

There are three types of control statements.

1. Decision Making Statements
2. Iteration Statements (Loops)
3. Jump Statements (break, continue, pass)

Decision Making Statement

Decision making statement used to control
the flow of execution of program depending upon
condition.

There are three types of
statement.

1. if statements
2. if-else statements
3. Nested if-else statement

decision making

1. if statements
An if statement is a programming conditional
statement that, if proved true, performs a
function or displays information.

Decision Making Statement

1. if statements
Syntax:

if(condition):
statement
[statements]

e.g.
noofbooks = 2
if (noofbooks == 2):

print('You have ')
print(‘two books’)

print(‘outside of if statement’)
Output
You have two books

Note:To indicate a block of code in Python, you must indent each line of
the block by the same amount. In above e.g. both print statements are
part of if condition because of both are at same level indented but not
the third print statement.

Decision Making Statement

2. if-else Statements
#find absolute value

a=int(input("enter a number"))

if(a<0):

a=a*-1

print(a)

#it will always return value in positive

Decision Making Statement

1. if statements
Using logical operator in if statement

x=1
y=2
if(x==1 and y==2):

print(‘condition matcing the criteria')

Output :-
condition matcing the criteria

a=100

if not(a == 20):

print('a is not equal to 20')

Output :-

a is not equal to 20

Decision Making Statement

2. if-else Statements
If-else statement executes some code if the test
expression is true (nonzero) and some other code if
the test expression is false.

Decision Making Statement

2. if-else Statements
Syntax:

if(condition):

statements

else:

statements
e.g.
a=10
if(a < 100):

print(‘less than 100')
else:

print(‘more than equal 100')

OUTPUT
less than 100

*Write a program in python to check that entered numer is even or odd

Decision Making Statement

3. Nested if-else statement
The nested if...else statement allows you to check for

multiple test expressions and execute different codes

for more than two conditions.

Decision Making Statement

3. Nested if-else statement
Syntax
If (condition):

statements
elif (condition):

statements
else:

statements
E.G.
num = float(input("Enter a number: "))
if num >= 0:

if num == 0:
print("Zero")

else:
print("Positive number")

else:
print("Negative number")

OUTPUT
Enter a number: 5
Positive number
* Write python program to find out largest of 3 numbers.

Decision Making Statement

3.Nested if-else Statements
#sort 3 numbers
first = int(input("Enter the first number: "))
second = int(input("Enter the second number: "))
third = int(input("Enter the third number: "))
small = 0
middle = 0
large = 0
if first < third and first < second:

small = first
if second < third and second < first:

small = second
else:

small = third
elif first < second and first < third:

middle = first
if second > first and second < third:

middle = second
else:

middle = third
elif first > second and first > third:

large = first
if second > first and second > third:

large = second
else:

large = third
print("The numbers in accending order are: ", small, middle, large)

Decision Making Statement

3.Nested if-else Statements
#Check leap year / divisibility
year = int(input("Enter a year: "))

if (year % 4) == 0:
if (year % 100) == 0:

if (year % 400) == 0:
print("{0} is a leap year".format(year))

else:
print("{0} is not a leap year".format(year))

else:
print("{0} is a leap year".format(year))

else:
print("{0} is not a leap year".format(year))

Decision Making Statement

Iteration Statements (Loops)

Iteration statements(loop) are used to execute a block
of statements as long as the condition is true.
Loops statements are used when we need to run same
code again and again.
Python Iteration (Loops) statements are of three type :-

1. While Loop

2. For Loop

3. Nested For Loops

1. While Loop

It is used to execute a block of statement as long as a
given condition is true. And when the condition become
false, the control will come out of the loop. The condition
is checked every time at the beginning of the loop.
Syntax
while (condition):

statement
[statements]

e.g.
x = 1
while (x <= 4):

print(x)
x = x + 1

Output
1
2
3
4

Iteration Statements (Loops)

While Loop continue
While Loop With Else

e.g.

x = 1
while (x < 3):

print('inside while loop value of x is ',x)
x = x + 1

else:
print('inside else value of x is ', x)

Output
inside while loop value of x is 1
inside while loop value of x is 2
inside else value of x is 3
*Write a program in python to find out the factorial of a given number

Iteration Statements (Loops)

While Loop continue
Infinite While Loop

e.g.
x = 5
while (x == 5):

print(‘inside loop')

Output
Inside loop
Inside loop
…
…

Iteration Statements (Loops)

2. For Loop
It is used to iterate over items of any sequence, such as a list
or a string.
Syntax
for val in sequence:

statements

e.g.
for i in range(3,5):

print(i)

Output
3
4

Iteration Statements (Loops)

2. For Loop continue
Example programs

for i in range(5,3,-1):
print(i)

Output
5
4
range() Function Parameters
start: Starting number of the sequence.
stop: Generate numbers up to, but not including this number.
step(Optional): Determines the increment between each numbers in
the sequence.

Iteration Statements (Loops)

2. For Loop continue
Example programs with range() and len() function

fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits)):

print ('Current fruit :', fruits[index])
range() with len() Function Parameters

Iteration Statements (Loops)

2. For Loop continue
For Loop With Else

e.g.
for i in range(1, 4):

print(i)
else: # Executed because no break in for

print("No Break")

Output
1
2
3
No Break

Iteration Statements (Loops)

2. For Loop continue
Nested For Loop

e.g.
for i in range(1,3):

for j in range(1,11):
k=i*j
print (k, end=' ')

print()

Output
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20

Iteration Statements (Loops)

2. For Loop continue
Factorial of a number

factorial = int(input(‘enter a number’))

check if the number is negative, positive or zero
if num < 0:

print("Sorry, factorial does not exist for negative
numbers")
elif num == 0:

print("The factorial of 0 is 1")
else:

for i in range(1,num + 1):
factorial = factorial*i

print("The factorial of",num,"is",factorial)

Iteration Statements (Loops)

2. For Loop continue
Compound Interest calculation

n=int(input("Enter the principle amount:"))
rate=int(input("Enter the rate:"))
years=int(input("Enter the number of years:"))

for i in range(years):
n=n+((n*rate)/100)
print(n)

Iteration Statements (Loops)

3. Jump Statements

Jump statements are used to transfer the program's
control from one location to another. Means these are
used to alter the flow of a loop like - to skip a part of a loop
or terminate a loop

There are three types of jump statements used in python.
1.break
2.continue
3.pass

Iteration Statements (Loops)

1.break
it is used to terminate the loop.

e.g.
for val in "string":

if val == "i":
break

print(val)

print("The end")

Output
s
t
r
The end

Iteration Statements (Loops)

2.continue
It is used to skip all the remaining statements

in the loop and move controls back to the top of
the loop.
e.g.
for val in "init":

if val == "i":
continue

print(val)
print("The end")

Output
n
t
The end

Iteration Statements (Loops)

3. pass Statement
This statement does nothing. It can be used when a
statement is required syntactically but the program
requires no action.
Use in loop
while True:

pass # Busy-wait for keyboard interrupt (Ctrl+C)

In function
It makes a controller to pass by without executing any code.
e.g.
def myfun():

pass #if we don’t use pass here then error message will be shown
print(‘my program')

OUTPUT
My program

Iteration Statements (Loops)

3. pass Statement continue
e.g.
for i in 'initial':

if(i == 'i'):
pass

else:
print(i)

OUTPUT
n
t
a
L

NOTE : continue forces the loop to start at the next iteration
while pass means "there is no code to execute here" and will
continue through the remainder or the loop body.

Iteration Statements (Loops)

