

Example 8 (Method 2)

Find the HCF and LCM of 6, 72 and 120, using the prime factorisation method.

2	72	
2	36	
2	18	
3	9	
3	3	
	1	

$$6 = 2 \times 3$$
 $72 = 2 \times 2 \times 2 \times 3 \times 3$
 $120 = 2 \times 2 \times 2 \times 3 \times 5$

$$H.C.F = 2 \times 3$$
$$= 6$$

Finding LCM

2	6	,	72	,	120
2	3	,	36	,	60
2	3	,	18	,	30
3	3	,	9	,	15
3	1	,	3	,	5
5	1	,	1	,	5
	1	,	1	,	1

$$L.C.M = 2 \times 2 \times 2 \times 3 \times 3 \times 5$$
$$= 360$$

THEOREM 1.3:-

Let p be a prime number. If p divides A², then p divides a, where a is positive integer.

Let a=p1.p2.p3.p4.p5.....pn where, p1, p2, p3, ..., pn are prime numbers which are necessarily not distinct. \Rightarrow A²=(p1.p2.p3.p4.p5....pn) (p1.p2.p3.p4.p5....pn) It is given that p divides A^2 . From the Fundamental theorem of Arithmetic, we know that every composite number can be expressed as product of unique prime numbers. This means that p is one of the numbers from (p1.p2.p3.p4.p5.....pn). We have a = (p1.p2.p3.p4.p5..pn) and p is one of the numbers from (p1.p2.p3.p4.p5.....pn).lt means that p also divides a. Hence, it is proved that if p divides A2 then it also divides a.

THEOREM 1.3:-

2 is irrational.

Proof: We shall start by assuming $\sqrt{2}$ as rational. In other words, we need to find integers x and y such that $\sqrt{2} = x/y$.

- (i) Let x and y have a common factor other than 1, and so we can divide by that common factor and assume that x and y are coprime. So, $y\sqrt{2} = x$.
- (ii) Squaring both side, we get, $2y^2 = x^2$.
- (iii) Thus, 2 divides x², and by theorem we can say that 2 divides x.
- (iv) Hence, x = 2z for some integer z.
- (v) Substituting x, we get, $2x^2 = 4z^2$ e. $y^2 = 4z^2$; which means y^2 is divisible by 2, and so y will also be divisible by 2.
- (vi) Now, from theorem, x and y will have 2 as a common factor. But, it is opposite to fact that x and y are co-prime.
- (vii) Hence, we can conclude √2 is irrational.

Example 9

Prove that $\sqrt{3}$ is irrational.

We have to prove $\sqrt{3}$ is irrational

Let us assume the opposite,

i.e., $\sqrt{3}$ is rational

Hence, $\sqrt{3}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1)

Hence,
$$\sqrt{3} = \frac{a}{b}$$

$$\sqrt{3}$$
 b = a

Squaring both sides

$$(\sqrt{3}b)^2 = a^2$$

$$3b^2 = a^2$$

$$\frac{a^2}{3} = b^2$$

Hence, 3 divides a²

By theorem: If p is a prime number, and p divides a^2 , then p divides a, where a is a positive number

So, 3 shall divide a also

...(1)

Hence, we can say

$$\frac{a}{3}$$
 = c where c is some integer

So,
$$a = 3c$$

Now we know that

$$3b^2 = a^2$$

Putting a = 3c

$$3b^2 = (3c)^2$$

$$3b^2 = 9c^2$$

$$b^2 = \frac{1}{3} \times 9c^2$$

$$b^2 = 3c^2$$

$$\frac{b^2}{3} = c^2$$

Hence 3 divides b²

By theorem: If p is a prime number, and p divides a^2 , then p divides a, where a is a positive number

By (1) and (2)

3 divides both a & b

Hence 3 is a factor of a and b

So, a & b have a factor 3

Therefore, a & b are not co-prime.

Hence, our assumption is wrong

: By contradiction,

 $\sqrt{3}$ is irrational

Example 10

Show that $5 - \sqrt{3}$ is irrational.

We have to prove 5 - $\sqrt{3}$ is irrational

Let us assume the opposite,

i.e., $5 - \sqrt{3}$ is rational

Hence, 5 - $\sqrt{3}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1)

Hence,
$$5 - \sqrt{3} = \frac{a}{b}$$

$$-\sqrt{3} = \frac{a}{b} - 5$$

$$-\sqrt{3} = \frac{a-5b}{b}$$

$$-\sqrt{3} = \frac{a - 5b}{b}$$

$$\sqrt{3} = -\left(\frac{a-5b}{b}\right)$$

$$\int_{a}^{\sqrt{3}} = \frac{3b - a}{b}$$

Irrational Rational

Here, $\frac{-a+5b}{b}$ is a rational number

But $\sqrt{3}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

: Our assumption is incorrect

Hence, $5 - \sqrt{3}$ is irrational

Hence proved.

Example 11

Show that $3\sqrt{2}$ is irrational.

We have to prove $3\sqrt{2}$ is irrational

Let us assume the opposite,

i.e., $3\sqrt{2}$ is rational

Hence, $3\sqrt{2}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1)

Hence,
$$3\sqrt{2} = \frac{a}{b}$$

$$\sqrt{2} = \frac{1}{3} \times \frac{a}{b}$$

$$\sqrt{2} = \frac{a}{3b}$$

$$\sqrt{2} = \frac{a}{3b}$$

$$\downarrow$$
Irrational Rational

Here, $\frac{a}{3b}$ is a rational number

But $\sqrt{2}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

 $\ \ \, \because \ \, \text{Our assumption is incorrect}$

Hence $3\sqrt{2}$ is irrational Hence proved

Ex 1.3,1

Prove that $\sqrt{5}$ is irrational.

We have to prove $\sqrt{5}$ is irrational Let us assume the opposite,

i.e., $\sqrt{5}$ is rational

Hence, $\sqrt{5}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1)

Hence,
$$\sqrt{5} = \frac{a}{b}$$

$$\sqrt{5}b = a$$

Squaring both sides

$$(\sqrt{5}b)^2 = a^2$$

$$5b^2 = a^2$$

$$\frac{a^2}{5} = b^2$$

Hence, 5 divides a²

By theorem: If p is a prime number, and p divides a^2 , then p divides a, where a is a positive number

So, 5 shall divide a also

...(1)

Hence, we can say

 $\frac{a}{5}$ = c where c is some integer

Now we know that

$$5b^2 = a^2$$

Putting a = 5c

$$5b^2 = (5c)^2$$

$$5b^2 = 25c^2$$

$$5b^2 = 25c^2$$

$$b^2 = \frac{1}{5} \times 25c^2$$

$$b^2 = 5c^2$$

$$\frac{b^2}{5} = c^2$$

Hence 5 divides b2

By theorem: If p is a prime number, and p divides a^2 , then p divides a, where a is a positive number

So, 5 divides b also

...(2)

By (1) and (2)

5 divides both a & b

Hence 5 is a factor of a and b

So, a & b have a factor 5

Therefore, a & b are not co-prime.

Hence, our assumption is wrong

∴ By contradiction,

 $\sqrt{5}$ is irrational

Ex 1.3, 2

Prove that $3 + 2\sqrt{5}$ is irrational.

We have to prove $3 + 2\sqrt{5}$ is irrational

Let us assume the opposite,

i.e., $3 + 2\sqrt{5}$ is rational

Hence, $3 + 2\sqrt{5}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1

Hence,
$$3 + 2\sqrt{5} = \frac{a}{b}$$

$$2\sqrt{5} = \frac{a}{b} - 3$$

$$2\sqrt{5} = \frac{a - 3b}{b}$$

$$\sqrt{5} = \frac{1}{2} \times \frac{a - 3b}{b}$$

$$\sqrt{5} = \frac{a - 3b}{2b}$$

Irrational

Rational

Here, $\frac{a-3b}{2b}$ is a rational number

But $\sqrt{5}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

∴ Our assumption is incorrect

Hence $3 + 2\sqrt{5}$ is irrational

Hence proved

Ex 1.3,3

Prove that the following are irrationals:

(i)
$$\frac{1}{\sqrt{2}}$$

We have to prove $\frac{1}{\sqrt{2}}$ is irrational

Let us assume the opposite,

i.e., $\frac{1}{\sqrt{2}}$ is rational

Hence, $\frac{1}{\sqrt{2}}$ can be written in the form $\frac{a}{b}$

where a and b (b≠0) are co-prime (no common factor other than 1)

Hence,
$$\frac{1}{\sqrt{2}} = \frac{a}{b}$$

Here, $\frac{b}{a}$ is a rational number

But $\sqrt{2}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

∴ Our assumption is incorrect

Hence $\frac{1}{\sqrt{2}}$ is irrational

Hence proved

Ex 1.3,3

Prove that the following are irrationals:

We have to prove $7\sqrt{5}$ is irrational

Let us assume the opposite,

i.e., $7\sqrt{5}$ is rational

Hence, $7\sqrt{5}$ can be written in the form $\frac{a}{b}$

where a and b (b≠0) are co-prime (no common factor other than 1)

Hence,
$$7\sqrt{5} = \frac{a}{b}$$

$$\sqrt{5} = \frac{1}{7} \times \frac{a}{b}$$

$$\sqrt{5} = \frac{a}{7b}$$

$$\downarrow$$
Irrational Rational

Here, $\frac{a}{7b}$ is a rational number

But $\sqrt{5}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

: Our assumption is incorrect

Hence $7\sqrt{5}$ is irrational Hence proved

Ex 1.3,3

Prove that the following are irrationals:

(iii)
$$6 + \sqrt{2}$$

We have to prove $6 + \sqrt{2}$ is irrational

Let us assume the opposite,

i.e.,
$$6 + \sqrt{2}$$
 is rational

Hence, $6 + \sqrt{2}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are co-prime (no common factor other than 1)

Hence,
$$6 + \sqrt{2} = \frac{a}{b}$$

$$\sqrt{2} = \frac{a}{b} - 6$$

$$\sqrt{2} = \frac{a - 6b}{b}$$
Irrational
Rational

Here,
$$\frac{a-6b}{b}$$
 is a rational number

But $\sqrt{5}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

: Our assumption is incorrect

Hence, $6 + \sqrt{2}$ is irrational

Hence proved.

$$\sqrt{2} = \frac{a - 6b}{b}$$
Irrational
Rational

Here,
$$\frac{a-6b}{b}$$
 is a rational number

But $\sqrt{5}$ is irrational

Since, Rational ≠ Irrational

This is a contradiction

: Our assumption is incorrect

Hence, $6 + \sqrt{2}$ is irrational

Hence proved.

PEAL MUNICIPALS L'ORINGO IL
Let & be a sational number whose decimal expansion terminates. Then & can be expressed
In the form I where I and q one corrine, and the 1 Prime factorisation of q is of the form 27m, where non one non-negative
62 0.375 -7 375 1000
7 3 2.5

Ex 1.4, 1

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(i)
$$\frac{13}{3125}$$

$$\frac{p}{q}$$
 is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

13 & 3125 have no common factors,

So, 13 & 3125 are co-prime

For Denominator (3125)

5	3125
5	625
5	125
5	25
5	5
32 3	1

Hence
$$3125 = 5 \times 5 \times 5 \times 5 \times 5$$
$$= 5^{5}$$

Denominator = 5^5

$$= 1 \times 5^5$$

$$= 2^0 \times 5^5$$

So , denominator is of the form $2^{n}\,5^{m}\,$

where
$$n = 0$$
, $m = 5$

Thus, $\frac{13}{3125}$ is a terminating decimal

Ex 1.4, 1

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(ii)
$$\frac{17}{8}$$

 $\frac{p}{a}$ is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

17 & 8 have no common factors, So, 17 & 8 are co-prime

For Denominator (8)

2	8	
2	4	
2	2	
	1	
	5	

Hence
$$8 = 2 \times 2 \times 2$$

= 2^3

Denominator =
$$2^3$$

$$= 1 \times 2^3$$

$$=5^0 \times 2^3$$

So , denominator is of the form $2^n \, 5^m$

where
$$n = 3$$
, $m = 0$

Thus, $\frac{17}{8}$ is a terminating decimal

Ex 1.4, 1

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(iii)
$$\frac{64}{455}$$

 $\frac{p}{a}$ is terminating if

(i) p & q are co-prime and

(ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

64 & 455 have no common factors, So, 64 & 455 are co-prime

Ex 1.4, 1

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(iv)
$$\frac{15}{1600}$$

$$\frac{15}{1600} = \frac{3}{320}$$

 $\frac{p}{a}$ is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

3 & 320 have no common factors, So, 3 & 320 are co-prime

For Denominator (320)

2	320	
2	160	
2	80	
2	40	
2	20	
2	10	
5	5	
	1	

Hence,

$$320 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5$$

= $2^{6} \times 5^{1}$

Denominator = $2^6 \times 5^1$

So , denominator is of the form $2^n \, 5^m$

where
$$n = 6$$
, $m = 1$

Thus, $\frac{3}{320}$ i.e. $\frac{15}{1600}$ is a terminating decimal

Ex 1.4, 1

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

$$(v)\frac{29}{343}$$

 $\frac{p}{a}$ is terminating if

(i) p & q are co-prime and

(ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

29 & 343 have no common factors, So, 29 & 343 are co-prime

For Denominator (343)

7	343	
7	49	
7	7	
	1	

Hence
$$343 = 7 \times 7 \times 7$$
$$= 7^3$$

Denominator = $7 \times 7 \times 7$

So , denominator is ${f not}$ of the form $2^n \ 5^m$

Thus, $\frac{29}{343}$ has a non-terminating repeating decimal expansion

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(vi)
$$\frac{23}{2^3 5^2}$$

 $\frac{p}{q}$ is terminating if

(i) p & q are co-prime and

(ii) q is of the form 2ⁿ 5^m

where n & m are non-negative integers

Checking co-prime

23 & 2³ 5² have no common factors,

So, 23 & 2³ 5² are co-prime

For Denominator (2³ 5²)

Denominator = $2^3 \times 5^2$ So , denominator is of the form $2^n 5^m$

where
$$n = 3$$
, $m = 2$

Thus, $\frac{23}{2^3 5^2}$ is a terminating decimal

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(vii)
$$\frac{129}{2^2 5^7 7^5}$$

$$\frac{p}{q}$$
 is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m

where n & m are non-negative integers

Checking co-prime

129 & $2^2 5^7 7^5$ have no common factors,

So, 129 & 2² 5⁷ 7⁵ are co-prime

For Denominator (2² 5⁷ 7⁵)

Denominator = $2^2 5^7 7^5$

So , denominator is \boldsymbol{not} of the form $2^n \ 5^m$

Thus, $\frac{129}{2^2 5^7 7^5}$ has a non-terminating repeating decimal expansion.

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(viii)
$$\frac{6}{15}$$

$$\frac{6}{15} = \frac{2}{5}$$

 $\frac{p}{a}$ is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

2 & 5 have no common factors, So, 2 & 5 are co-prime

For Denominator (5)

$$= 5^{1}$$

$$=1\times5^{1}$$

$$= 2^0 \times 5^1$$

So , denominator is of the form $2^n \, 5^m$

where
$$n = 0$$
, $m = 1$

Thus, $\frac{2}{5}$ i.e. $\frac{6}{15}$ is a terminating decimal

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(ix)
$$\frac{35}{50}$$

$$\frac{35}{50} = \frac{7}{10}$$

 $\frac{p}{q}$ is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

7 & 10 have no common factors, So, 7 & 10 are co-prime

For Denominator (10)

$$=2\times5$$

$$= 2^1 \times 5^1$$

So , denominator is of the form $2^n \, 5^m$

where
$$n = 1$$
, $m = 1$

Thus, $\frac{7}{10}$ i.e. $\frac{35}{50}$ is a terminating decimal

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

$$(x)\frac{77}{210}$$

$$\frac{77}{210} = \frac{11}{30}$$

 $\frac{p}{q}$ is terminating if

- (i) p & q are co-prime and
- (ii) q is of the form 2ⁿ 5^m where n & m are non-negative integers

Checking co-prime

11 & 30 have no common factors, So, 11 & 30 are co-prime

For Denominator (30)

Denominator = 30

$$=2\times3\times5$$

So , denominator is \mbox{not} of the form $2^n \ 5^m$

Thus, $\frac{11}{30}$ i.e. $\frac{77}{210}$ is a non-terminating repeating decimal

Ex 1.4, 3 (Method 1)

The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $,\frac{p}{q}$ what can you say about the prime factors of q?

(i) 43.123456789

43.123456789 is terminating

So, it would be a rational number

$$43.123456789 = \frac{43123456789}{10000000000}$$

$$= \frac{43123456789}{(10)^9}$$

$$= \frac{43123456789}{(2 \times 5)^9}$$

$$= \frac{43123456789}{(2 \times 5)^9}$$

Hence 43.123456789 is now in the form of $\frac{p}{q}$ And the prime factors of q are in terms of 2 and 5