

copy

Year 21-22

INDEX

Chapter-1 Real \mathcal{N} umbers.
Chapter-2 Polynomíals.
Chapter-7 Coordinate Geometry.
Chapter-15 Probability.
Chapter-8 Introduction to Trigonometry.
Chapter -9 Some Applications of Trigonometry.
Chapter-5 Arithmetíc Progressions.
Chapter-6 Triangles

CHAPTER NO. - 8

CHAPTER NAME - iNTRODUCTION TO TRIGONOMETRY

KEY POINTS TO REMEMBER -

Notes

- Trigonometry literally means measurement of sides and angles of a triangle.
- Positive and Negative angles: Angles in anti-clockwise direction are taken as positive angles and angles in clockwise direction are taken as negative angles.
- Trigonometric Ratios of an acute angle of a right angled triangle:

1. In a right triangle $A B C$, right-angled at B,

Solving right triangles

We can use the Pythagorean Theorem and properties of sines, cosines, and tangents to solve the triangle, that is, to find unknown parts in terms of known parts.

- Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$.
- Sines: $\sin A=a / c, \quad \sin B=b / c$.

$$
\sin \mathrm{A}=\frac{\text { side opposite to angle } \mathrm{A}}{\text { hypotenuse }}
$$

- Cosines: $\cos A=b / c, \quad \cos B=a / c$.

$$
\cos \mathrm{A}=\frac{\text { side adjacent to angle } \mathrm{A}}{\text { hypotenuse }}
$$

- Tangents: $\tan A=a / b, \tan B=b / a$.
$\tan \mathrm{A}=\frac{\text { side opposite to angle } \mathrm{A}}{\text { side adjacent to angle } \mathrm{A}}$

Trigonometric Ratios

$$
\begin{aligned}
\sin \theta & =\frac{o p p}{h y p} \\
\cos \theta & =\frac{a d j}{h y p} \\
\tan \theta & =\frac{o p p}{a d j}
\end{aligned}
$$

- Cosec $\mathrm{A}=\frac{\text { hypotenuse }}{\text { side } 0 \text { pposite to angle } A}$
- $\sec \mathrm{A}=\frac{\text { hypotenuse }}{\text { side adjacent to angle } A}$
- $\cot \mathrm{A}=\frac{\text { side opposite to angle } \mathrm{A}}{\text { side adjacent to angle } \mathrm{A}}$

Opposite of Sin: Cosecant
Opposite of Cos: Secant
Opposite of Tan: Cotangent
Opposite of Cosecant: Sin

Opposite of Cotangent: Tan

Opposite of Secant: Cosecant

$\operatorname{Sin} \theta$ $(\sin \theta)$	$\frac{\text { Perpendicular }}{\text { Hypotenuse }}$	$\frac{y}{r}$
$\operatorname{Cosine} \boldsymbol{\theta}$ $(\cos \theta)$	$\frac{\text { Base }}{\text { Hypotenuse }}$	$\frac{x}{r}$
Tangent $\boldsymbol{\theta}$ $(\tan \theta)$	$\frac{\text { Perpendicular }}{\text { Base }}$	$\frac{y}{x}$
Cosecant θ $(\operatorname{cossec} \theta)$	$\frac{\text { Hypotenuse }}{\text { Perpendicular }}$	$\frac{r}{y}$
Secant θ $(\sec \theta)$	$\frac{\text { Hypotenuse }}{\text { Base }}$	$\frac{r}{x}$
Cotangent $\boldsymbol{\theta}$ $(\cot \theta)$	$\frac{\text { Base }}{\text { Perpendicular }}$	$\frac{x}{y}$

- if one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of the angle can be easily determined.
(a) Find the sides of the right triangle in terms of k .
(b) Use Pythagoras Theorem and find the third side of the right triangle.
(c) Use definitions of t-ratios and substitute the values of sides.
(d) k is cancelled from numerator and denominator and the value of t -ratio is obtained.
- Trigonometric Ratios of some specified angles:

The values of trigonometric ratios for angles $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°

- The value of $\sin A$ or $\cos A$ never exceeds 1 , whereas the value of $\sec A$ or $\operatorname{cosec} A$ is always greater than or equal to 1 .

ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

- Trigonometric Ratios of Complementary Angles:

$$
\begin{array}{ll}
\sin \left(90^{\circ}-A\right)=\cos A, & \cos \left(90^{\circ}-A\right)=\sin A \\
\tan \left(90^{\circ}-A\right)=\cot A, & \cot \left(90^{\circ}-A\right)=\tan A
\end{array}
$$

$$
\sec \left(90^{\circ}-A\right)=\operatorname{cosec} A, \quad \operatorname{cosec}\left(90^{\circ}-A\right)=\sec A .
$$

- Trigonometric Identities:

1. $\operatorname{Sin}^{2} A+\cos ^{2} A=1$
2. $\operatorname{Sec}^{2} A-\tan ^{2} A=1$ for $0^{\circ} \leq A<90^{\circ}$,
3. $\operatorname{Cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}=1$ for $0^{\circ}<\mathrm{A} \leq 90^{\circ}$

CHAPTER 8

INTRODUCTION TO TRIGONOMETRY

(Ex. 8.1)

1. In Δ_{ABC}, right angled at $\mathrm{B}, \mathrm{AB}=\mathbf{2 4} \mathrm{cm}, \mathrm{BC}=7 \mathrm{~cm}$. Determine:
(i) $\sin A \cos A$
(ii) $\sin C \cos C$

Ans. Let us draw a right angled triangle ABC , right angled at B . Using

Pythagoras theorem,

Let $\mathrm{AC}=24 \mathrm{k}$ and $\mathrm{BC}=7 \mathrm{k}$

Using Pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
$=(24)^{2}+(7)^{2}=576+49=625$
$\Rightarrow A C=25 \mathrm{~cm}$
(i) $\sin \mathrm{A}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{7}{25}, \cos \mathrm{~A}=\frac{\mathrm{B}}{\mathrm{H}}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{24}{25}$
(ii) $\sin \mathrm{C}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{24}{25}, \cos \mathrm{C}=\frac{\mathrm{B}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{7}{25}$
2. In adjoining figure, find $\tan \mathrm{P}-\cot \mathrm{R}$:

Ans. In triangle PQR, Using Pythagoras theorem,

$$
\begin{aligned}
& P R^{2}=P Q^{2}+Q R^{2} \\
& \Rightarrow(13)^{2}=(12)^{2}+Q R^{2} \\
& \Rightarrow Q R^{2}=169-144=25 \\
& \Rightarrow Q R=5 \mathrm{~cm}
\end{aligned}
$$

$\therefore \tan P-\cot R=\frac{\mathrm{P}}{\mathrm{B}}-\frac{\mathrm{B}}{\mathrm{P}}=\frac{\mathrm{QR}}{\mathrm{PQ}}-\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{5}{13}-\frac{5}{13}=0$
3. If $\sin A=\frac{3}{4}=$ calculate $\cos A$ and $\tan A$.

Ans. Given: A triangle ABC in which $\angle \mathrm{B}=90^{\circ}$

Then, Using Pythagoras theorem,
$\mathrm{AB}=\sqrt{(\mathrm{AC})^{2}-(\mathrm{BC})^{2}}=\sqrt{(4 k)^{2}-(3 k)^{2}}$
$=\sqrt{16 k^{2}-9 k^{2}}=k \sqrt{7}$
$\therefore \cos \mathrm{A}=\frac{\mathrm{B}}{\mathrm{H}}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{k \sqrt{7}}{4 k}=\frac{\sqrt{7}}{4}$
$\tan \mathrm{A}=\frac{\mathrm{P}}{\mathrm{B}}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 k}{k \sqrt{7}}=\frac{3}{\sqrt{7}}$
4. Given $15 \cot A=8$, find $\sin A$ and $\sec A$

Ans. Given: A triangle ABC in which $\angle \mathrm{B}=90^{\circ}$
$15 \cot A=8$
$\Rightarrow \cot A=\frac{8}{15}$

Let $\mathrm{AB}=8 k$ and $\mathrm{BC}=15 k$
Then using Pythagoras theorem,
$\mathrm{AC}=\sqrt{(\mathrm{AB})^{2}+(\mathrm{BC})^{2}}$
$=\sqrt{(8 k)^{2}+(15 k)^{2}}$
$=\sqrt{64 k^{2}+225 k^{2}}$
$=\sqrt{289 k^{2}}=17 k$
$\therefore \sin \mathrm{A}=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{15 k}{17 k}=\frac{15}{17}$
$\sec \mathrm{A}=\frac{\mathrm{H}}{\mathrm{B}}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{17 k}{8 k}=\frac{17}{8}$
5. Given $\sec \theta=\frac{13}{12}$, calculate all other trigonometric ratios.

Ans. Consider a triangle ABC in which $\angle \mathrm{A}=\theta$ and $\angle \mathrm{B}=90^{\circ}$

Let $\mathrm{AB}=12 k$ and $\mathrm{BC}=5 k$
Then, using Pythagoras theorem,

$$
\begin{aligned}
& \mathrm{BC}=\sqrt{(\mathrm{AC})^{2}-(\mathrm{AB})^{2}} \\
& =\sqrt{(13 k)^{2}-(12 k)^{2}} \\
& =\sqrt{169 k^{2}-144 k^{2}} \\
& =\sqrt{25 k^{2}}=5 k
\end{aligned}
$$

$$
\therefore \sin \theta=\frac{\mathrm{P}}{\mathrm{H}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{5 k}{13 k}=\frac{5}{13}
$$

$$
\cos \theta=\frac{\mathrm{B}}{\mathrm{H}}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12 k}{13 k}=\frac{12}{13}
$$

$$
\tan \theta=\frac{\mathrm{P}}{\mathrm{~B}}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5 k}{12 k}=\frac{5}{12}
$$

$$
\cot \theta=\frac{\mathrm{B}}{\mathrm{P}}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12 k}{5 k}=\frac{12}{5}
$$

$$
\operatorname{cosec} \theta=\frac{\mathrm{H}}{\mathrm{P}}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13 k}{5 k}=\frac{13}{5}
$$

6. If $\angle_{\mathbf{A n d}} \angle \mathbf{B}$ are acute angles such that $\cos A=\cos B$; then show that $\angle_{\mathbf{A}}=\angle_{\mathbf{B}}$.

Ans. In right triangle ABC ,

$\cos A=\frac{\mathrm{AC}}{\mathrm{AB}} \quad \cos B=\frac{\mathrm{BC}}{\mathrm{AB}}$

But $\cos A=\cos B$ [Given]
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow \mathrm{AC}=\mathrm{BC}$
$\Rightarrow L_{\mathrm{A}}=L_{\mathrm{B}} \quad$ [Angles opposite to equal sides are equal]
7. If $\cot \theta=\frac{7}{8}$, evaluate:
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
(ii) $\cot ^{2} \theta$

Ans. Consider a triangle ABC in which $\angle \mathrm{A}=\theta$ and $\angle \mathrm{B}=90^{\circ}$

Let $\mathrm{AB}=7 k$ and $\mathrm{BC}=8 k$
Then, using Pythagoras theorem,
$\mathrm{AC}=\sqrt{(\mathrm{BC})^{2}+(\mathrm{AB})^{2}}$
$=\sqrt{(8 k)^{2}+(7 k)^{2}}$
$=\sqrt{64 k^{2}+49 k^{2}}$
$=\sqrt{113 k^{2}}=\sqrt{113} k$
$\therefore \sin \theta=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
$\cos \theta=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$

$$
=\frac{1-\frac{64}{113}}{1-\frac{49}{\ldots 9}}=\frac{113-64}{113-49}=\frac{49}{64}
$$

(ii) $\cot ^{2} \theta=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{49 / 113}{64 / 113}=\frac{49}{64}$
8. If $3 \cot A=4$, check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.

Ans. Consider a triangle ABC in which $\angle \mathrm{B}=90^{\circ}$.

And $3 \cot A=4$
$\Rightarrow \cot A=\frac{4}{3}$
Let $\mathrm{AB}=4 k$ and $\mathrm{BC}=3 k$.
Then, using Pythagoras theorem,
$A C=\sqrt{(B C)^{2}+(A B)^{2}}$
$=\sqrt{(3 k)^{2}+(4 k)^{2}}$
$=\sqrt{16 k^{2}+9 k^{2}}$
$=\sqrt{25 k^{2}}=5 k$
$\operatorname{Sin} \mathrm{A}=\mathrm{BC} / \mathrm{AC}=3 \mathrm{k} / 5 \mathrm{k}=3 / 5$

$$
\cos A=\frac{A B}{A C}=\frac{4 k}{5 k}=\frac{4}{5}
$$

And $\tan \mathrm{A}=\mathrm{BC} / \mathrm{AB}=3 \mathrm{k} / 4 \mathrm{k}=3 / 4$

Now, L.H.S. $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}$
$=\frac{16-9}{16+9}=\frac{7}{25}$
R.H.S. $\cos ^{2} A-\sin ^{2} A=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$
\because L.H.S. $=$ R.H.S.
$\therefore \frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$
9. In $\Delta_{\mathbf{A B C}}$ right angles at \mathbf{B}, if $\quad \tan A=\frac{1}{\sqrt{3}}$, find value of:
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos \mathrm{A} \cos \mathrm{C}-\sin \mathrm{A} \sin \mathrm{C}$

Ans. Consider a triangle ABC in which $\angle \mathrm{B}=90^{\circ}$
Let $\mathrm{BC}=k$ and $\mathrm{AB}=\sqrt{3} k$

Then, using Pythagoras theorem,
$A C=\sqrt{(B C)^{2}+(A B)^{2}}$
$=\sqrt{(k)^{2}+(\sqrt{3} k)^{2}}$
$=\sqrt{k^{2}+3 k^{2}}=\sqrt{4 k^{2}}=2 k$
$\therefore \sin A=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
$\cos A=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$

For \angle_{C}, Base $=\mathrm{BC}$, Perpendicular $=\mathrm{AB}$ and Hypotenuse $=\mathrm{AC}$
$\therefore \sin C=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\cos \mathrm{C}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
(i) $\sin A \cos C+\cos A \sin C=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
$=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}$
(ii) $\cos A \cos C-\sin A \sin C=$
$=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{}=0$
10. An $\triangle P Q R$, right angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P=\cos P$ and $\tan P$.

Ans. In Δ_{PQR}, right angled at Q .

$\mathrm{PR}+\mathrm{QR}=25 \mathrm{~cm}$ and $\mathrm{PQ}=5 \mathrm{~cm}$
Let $\mathrm{QR}=x_{\mathrm{cm}}$, then $\mathrm{PR}=(25-x) \mathrm{cm}$
Using Pythagoras theorem,
$R P^{2}=R Q^{2}+Q P^{2}$
$\Rightarrow(25-x)^{2}=(x)^{2}+(5)^{2}$
$\Rightarrow 625-50 x+x^{2}=x^{2}+25$
$\Rightarrow-50 x=-600$
$\Rightarrow x=12$
$\therefore R Q=12 \mathrm{~cm}$ and $R P=25-12=13 \mathrm{~cm}$
$\therefore \sin P=\frac{R Q}{R P}=\frac{12}{13}$

$$
\begin{aligned}
& \cos P=\frac{\mathrm{PQ}}{\mathrm{RP}}=\frac{5}{13} \\
& \tan P=\frac{\mathrm{RQ}}{\mathrm{PQ}}=\frac{12}{5}
\end{aligned}
$$

11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan A$ is always less than 1.
(ii) $\sec A=\frac{12}{5}$ for some value of angle A.
(iii) $\cos A$ is the abbreviation used for the cosecant of angle A.
(iv) $\cot A$ is the product of \cot and A .
(v) $\sin \theta=\frac{4}{3}$ for some angle θ.

Ans. (i) False because sides of a right triangle may have any length, so $\tan A$ may have any value.
(ii) True as $\sec A$ is always greater than 1 .
(iii) False as $\cos A$ is the abbreviation of cosine A .
(iv) False as $\cot A$ is not the product of 'cot' and A. 'cot' is separated from A has no meaning.
(v) False as $\sin \theta$ cannot be >1

(Ex. 8.2)

1. Evaluate:
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
(iii) $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
(iv) $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Ans. (i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
$=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}$
$=\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$=2(1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=2+\frac{3}{4}-\frac{3}{4}$
$=2$
(iii) $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2+2 \sqrt{3}}=\frac{\sqrt{3}}{\sqrt{2} \times 2(\sqrt{3}+1)}$
$=\frac{\sqrt{3}}{\sqrt{2} \times 2(\sqrt{3}+1)} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$
$=\frac{\sqrt{3}(\sqrt{3}-1)}{\sqrt{2} \times 2(3-1)}$
$\left[\right.$ Since $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\frac{\sqrt{3}(\sqrt{3}-1)}{4 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{3 \sqrt{2}-\sqrt{6}}{8}$
(iv) $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
$=\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{3}+\frac{1}{2}+1}=\frac{\frac{\sqrt{3}+2 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{4+\sqrt{3}+2 \sqrt{3}}{2 \sqrt{3}}}=\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4}$
$=\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4} \times \frac{3 \sqrt{3}-4}{3 \sqrt{3}-4}$
$=\frac{27+16-24 \sqrt{3}}{27-16} \quad\left[\right.$ Since $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\frac{43-24 \sqrt{3}}{11}$
(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

$$
=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

$=\frac{5 \times \frac{1}{4}+4 \times \frac{4}{3}-1}{\frac{1}{4}+\frac{3}{4}}=\frac{\frac{3}{4} 1 \frac{4}{3} 1}{\frac{4}{4}}$
$=\frac{15+64-12}{12}=\frac{67}{12}$
2. Choose the correct option and justify:
(i) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
(A) $\sin 60^{\circ}$
(B) $\cos 60^{\circ}$
(C) $\tan 60^{\circ}$
(D) $\sin 30^{\circ}$
(ii) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
(A) $\tan 90^{\circ}$
(B) 1
(C) $\sin 45^{\circ}$
(D) 0
(iii) $\sin 2 A=2 \sin A$ is true when $\mathbf{A}=$
(A) 0°
(B) 30°
(C) 45°
(D) 60°
(iv) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
(A) $\cos 60^{\circ}$
(B) $\sin 60^{\circ}$
(C) $\tan 60^{\circ}$
(D). None of these

Ans. (i) (A) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
$=\frac{2 \times 1 / \sqrt{3}}{1+(1 / \sqrt{3})^{2}}$
$=\frac{2}{\sqrt{3}} \times \frac{3}{3+1}=\frac{\sqrt{3}}{2}=\sin 60^{\circ}$
(ii) (D) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=\frac{1-1}{1+1}=\frac{0}{2}=0$
(iii). (A) Since $A=0$, then
$\sin 2 A=\sin 0^{\circ}=0$ and
$2 \sin A=2 \sin 0^{\circ}=2 \times 0=0$
$\therefore \sin 2 A=\sin A$ when $\mathrm{A}=0$

- (iv). $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$
$=\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}$
$=\frac{2}{\sqrt{3}} \times \frac{3}{3-1}=\sqrt{3}=\tan 60^{\circ}$

3. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}} ; 0^{\circ}<A+B \leq 90^{\circ} ; A>B$; find \mathbf{A} and \mathbf{B}.

Ans. $\tan (A+B)=\sqrt{3}$
$\Rightarrow \tan (A+B)=\tan 60^{\circ}$
$\Rightarrow A+B=60^{\circ}$
Also, $\quad \tan (A-B)=\frac{1}{\sqrt{3}}$
$\Rightarrow{ }_{\mathrm{A}-\mathrm{B}=30^{\circ}}$

On adding eq. (i) and (ii), we get,
$2 \mathrm{~A}=90^{\circ} \Rightarrow \mathrm{A}=45^{\circ}$

On Subtracting eq. (i) and eq. (ii), we get
$2 \mathrm{~B}=30^{\circ} \Rightarrow{ }_{\mathrm{B}=}=15^{\circ}$
7. State whether the following are true or false. Justify your answer.
(i) $\sin (A+B)=\sin A+\sin B$
(ii) The value of $\sin \theta$ increases as θ increases.
(iii)The value of $\cos \theta$ increases as θ increases.
(iv) $\sin \theta=\cos \theta$ for all values of θ.
(v) $\cot A$ is not defined for $A=0^{\circ}$.

Ans. (i) False, because, let $\mathrm{A}=60^{\circ}$ and $\mathrm{B}=30^{\circ}$

Then,

$$
\sin (A+B)=\sin \left(60^{\circ}+30^{\circ}\right)=\sin 90^{\circ}=1
$$

And $\sin A+\sin B=\sin 60^{\circ}+\sin 30^{\circ}=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}$
$\therefore \sin (A+B) \neq \sin A+\sin B$
Ans
\}
(ii) True, because it is clear from the table below

θ	0^{2}	30°	45^{2}	60°	90^{2}
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1

Therefore, it is clear, the value of $\sin \theta$ increases as θ increases.
(vi) False, because

θ	0°	30°	45°	60°	90°
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0

It is clear, the value of $\cos \theta$ decreases as θ increases
(vi) False as it is only true for $\theta=45^{\circ}$.
$\Rightarrow \sin 45^{\circ}=\frac{1}{\sqrt{2}}=\cos 45^{\circ}$
(vii) True, because $\tan 0^{\circ}=0$ and $\cot 0^{\circ}=\frac{1}{\tan 0^{\circ}}$ i.e $\frac{1}{0}$ undefined.

Ex-8.3

1. Evaluate:

(i) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
(ii) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
(iii) $\cos 48^{\circ}-\sin 42^{\circ}$
(iv) $\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

Ans. (i) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}=\frac{\sin \left(90^{\circ}-72^{\circ}\right)}{\cos 72^{\circ}}$
$=\frac{\cos 72^{\circ}}{\cos 72^{\circ}} \quad\left[\right.$ Since $\left.\sin \left(90^{\circ}-\theta\right)=\cos \theta\right]$
$=1$
(iii) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}=\frac{\tan \left(90^{\circ}-64^{\circ}\right)}{\cot 64^{\circ}}$
$=\frac{\cot 64^{\circ}}{\cot 64^{\circ}} \quad\left[\right.$ Since $\left.\tan \left(90^{\circ} _\theta\right)=\cot \theta\right]$
$=1$
(iii) $\cos 48^{\circ}-\sin 42^{\circ}$
$=\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ}$
$=\sin 42^{\circ}-\sin 42^{\circ} \quad\left[\right.$ Since $\left.\cos \left(90^{\circ} \quad \theta\right)=\sin \theta\right]$
$=0$
(iv) $\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
$=\operatorname{cosec}\left(90^{\circ}-59^{\circ}\right)-\sec 59^{\circ}$
$=\sec 59^{\circ}-\sec 59^{\circ} \quad\left[\right.$ Since $\left.\operatorname{cosec}\left(90^{\circ} _\theta\right)=\sec \theta\right]$
$=0$

2. Show that:

(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Ans. (i) L.H.S. $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$
$=\cot 42^{\circ} \cot 67^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\frac{1}{\tan 42^{\circ}} \cdot \frac{1}{\tan 67^{\circ}} \cdot \tan 42^{\circ} \cdot \tan 67^{\circ}=1=$ R.H.S.
.(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}$
$=\cos \left(90^{\circ}-52^{\circ}\right) \cdot \cos \left(90^{\circ}-38^{\circ}\right)-\sin 38^{\circ} \cdot \sin 52^{\circ}$
$=\sin 52^{\circ} \sin 38^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0=$ R.H.S.
3. If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where 2 A is an acute angle, find the value of A . Ans. Given: $\tan 2 A=\cot \left(A-18^{\circ}\right)$

$$
\begin{gathered}
\Rightarrow \cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right) \quad\left[\text { Since } \tan \left(90^{\circ}-\theta\right)=\cot \theta\right] \\
\\
90^{\circ}-2 \mathrm{~A}=\mathrm{A}-18^{\circ} \\
\\
90^{\circ}+18^{\circ}=2 \mathrm{~A}+\mathrm{A} \\
3 \mathrm{~A}=108^{\circ} \\
\Rightarrow \mathrm{A}=36^{\circ}
\end{gathered}
$$

4. If $\tan A=\cot B$;
prove that $A+B=90^{\circ}$.

Ans. Given: $\tan A=\cot B$
$\Rightarrow \cot \left(90^{\circ}-A\right)=\cot B$
$\Rightarrow 90^{\circ}-A=B$
$\Rightarrow 90^{\circ}=\mathrm{A}+\mathrm{B}$
$\Rightarrow \mathrm{A}+\mathrm{B}=90^{\circ}$
5. If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where 4 A is an acute angle, find the value of A

Ans. Given: $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$
$\Rightarrow \operatorname{cosec}\left(90^{\circ}-4 A\right)=\operatorname{cosec}\left(A-20^{\circ}\right) \quad\left[\right.$ Since $\left.\sec \left(90^{\circ}{ }_{-} \theta\right)=\operatorname{cosec} \theta\right]$
$\Rightarrow 90^{\circ}-4 A=A-20^{\circ}$
$\Rightarrow-4 A-A=-20^{\circ}-90^{\circ}$
$\Rightarrow-5 A=-110^{\circ}$
$\Rightarrow \mathrm{A}=22^{\circ}$
6. If A, B and C are interior angles of a $\Delta_{A B C}$, then show that $\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$.

Ans. Given: A, B and C are interior angles of a Δ_{ABC}.
$\therefore \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ} \quad$ [Triangle sum property]
Dividing both sides by 2 , we get
$\Rightarrow \frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{2}=90^{\circ}$
$\Rightarrow \quad \frac{\mathrm{A}}{2}+\frac{\mathrm{B}+\mathrm{C}}{2}=90^{\circ}$
$\Rightarrow \frac{\mathrm{B}+\mathrm{C}}{2}=90^{\circ}-\frac{\mathrm{A}}{2}$
$\Rightarrow \quad\left[\right.$ Since $\left.\sin \left(90^{\circ}{ }_{-} \theta\right)=\cos \theta\right]$
7. Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45°.

Ans. $\sin 67^{\circ}+\cos 75^{\circ}$

$$
\begin{aligned}
& =\sin \left(90^{\circ}-23^{\circ}\right)+\cos \left(90^{\circ}-15^{\circ}\right) \quad\left[\text { Since } \sin \left(90^{\circ}-\theta\right)=\cos \theta\right. \text { and } \\
& \left.\cos \left(90_{\circ}-\theta\right)=\sin \theta\right] \\
& =\cos 23^{\circ}+\sin 15^{\circ}
\end{aligned}
$$

Ex. 8.4

1. Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$ Ans. For $\sin A$,

By using identity $\operatorname{cosec}^{2} A-\cot ^{2} A=1$
$\Rightarrow \operatorname{cosec}^{2} A=1+\cot ^{2} A$
$\Rightarrow \frac{1}{\sin ^{2} A}=1+\cot ^{2} A$
$\Rightarrow \sin ^{2} A=\frac{1}{1+\cot ^{2} A}$

For $\sec A$,
By using identity $\sec ^{2} A-\tan ^{2} A=1$
$\Rightarrow \sec ^{2} A=1+\tan ^{2} A$

$$
\sec ^{2} A=1+\frac{1}{\cot ^{2} A}=\frac{\cot ^{2} A+1}{\cot ^{2} A}
$$

For $\tan A$,
$\tan A=\frac{1}{\cot A}$
(iv) Write the other trigonometric ratios of \mathbf{A} in terms of $\sec A$ Ans. For $\sin A$,

By using identity, $\sin ^{2} A+\cos ^{2} A=1$

$$
\begin{aligned}
& \Rightarrow \sin ^{2} A=1-\cos ^{2} A \\
& \Rightarrow \sin ^{2} A=1-\frac{1}{\sec ^{2} A}=\frac{\sec ^{2} A-1}{\sec ^{2} A} \\
& \Rightarrow \sin A=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}
\end{aligned}
$$

For $\cos A$,
$\cos A=\frac{1}{\sec A}$

For $\tan A$,
By using identity $\sec ^{2} A-\tan ^{2} A=1$
$\Rightarrow \tan ^{2} A=\sec ^{2} A-1$
$\Rightarrow \tan A=\sqrt{\sec ^{2} A-1}$
For $\operatorname{cosec} A$
$\operatorname{cosec} A=\frac{1}{\sin A} \quad \frac{1}{\frac{\sqrt{\sec ^{2} A-1}}{\sec A}}$

For $\cot A$,
$\cot A=\frac{1}{\tan A}$
$\Rightarrow \cot A=\frac{1}{\sqrt{\sec ^{2} A-1}}$

5. Evaluate:

(i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Ans. (i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

$$
\begin{aligned}
& =\frac{\sin ^{2} 63^{\circ}+\sin ^{2}\left(90^{\circ}-63^{\circ}\right)}{\cos ^{2}\left(90^{\circ}-73^{\circ}\right)+\cos ^{2} 73^{\circ}} \\
& =\frac{\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}}{\sin ^{2} 73^{\circ}+\cos ^{2} 73^{\circ}} \\
& {\left[\because \sin \left(90^{\circ}-\theta\right)=\cos \theta \cdot \cos \left(90^{\circ}-\theta\right)=\sin \theta\right]} \\
& =\frac{1}{1}=1\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& \text { (ii) } \sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ} \\
& =\sin 25^{\circ} \cdot \cos \left(90^{\circ}-25^{\circ}\right)+\cos 25^{\circ} \cdot \sin \left(90^{\circ}-25^{\circ}\right) \\
& =\sin 25^{\circ} \cdot \sin 25^{\circ}+\cos 25^{\circ} \cdot \cos 25^{\circ} \\
& =\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}=1 \\
& {\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]}
\end{aligned}
$$

4. Choose the correct option. Justify your choice:
(i) $9 \sec ^{2} A-9 \tan ^{2} A=$
(A) 1
(B) 9
(C) 8
(D) 0
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=$
(A) 0
(B) 1
(C) 2
(D) none of these
(iii) $(\sec A+\tan A)(1-\sin A)=$
(A) $\sec A$
(B) $\sin A$
(C) $\operatorname{cosec} A$
(D). $\cos A$
(iv) $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=$
(A) $\sec ^{2} A$
(B) -1
(C) $\cot ^{2} A$
(D) none of these

Ans. (i) (B) $9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9 \times 1=9 \quad\left[\right.$ Since $\left.\sec ^{2} \theta-\tan ^{2} \theta=1\right]$
(ii) (C) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$

$$
=\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)
$$

$=\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right)\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)$
$=\frac{(\cos \theta+\sin \theta)^{2}-(1)^{2}}{\cos \theta \cdot \sin \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta+2 \cos \theta \sin \theta-1}{\cos \theta \cdot \sin \theta}$
$=\frac{1+2 \cos \theta \sin \theta-1}{\cos \theta \cdot \sin \theta}$
$\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=\frac{2 \cos \theta \sin \theta}{\cos \theta \cdot \sin \theta}=2$
(iii)(D) $(\sec A+\tan A)(1-\sin A)$
$=\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)$
$=\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)$
$=\frac{1-\sin ^{2} A}{\cos A}$
$\left[\right.$ Since $\left.(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\frac{\cos ^{2} A}{\cos A}$

$$
\left[\because 1-\sin ^{2} A=\cos ^{2} A\right]
$$

$=\cos A$
(iv)(D) $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{\sec ^{2} A-\tan ^{2} A+\tan ^{2} A}{\operatorname{cosec}^{2} A-\cot ^{2} A+\cot ^{2} A}$
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$=\frac{\sec ^{2} A}{\operatorname{cosec}{ }^{2} A}=\frac{\frac{1}{\cos ^{2} A}}{\frac{1}{\sin ^{2} A}}$
$=\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A$
5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
(ii) $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
(iii) $\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$
(iv) $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$
using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
(vii) $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
(viii) $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
(x) $\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Ans. (i) L.H.S. $(\operatorname{cosec} \theta-\cot \theta)^{2}$
$=\operatorname{cosec}^{2} \theta+\cot ^{2} \theta-2 \operatorname{cosec} \theta \cot \theta \quad\left[\right.$ Since $\left.(a-b)_{2}=a^{2}+b^{2} _2 a b\right]$
$=\frac{1}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-2 \times \frac{1}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}$
$=\frac{1+\cos ^{2} \theta-2 \cos \theta}{\sin ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}\left[\because a^{2}+b^{2}-2 a b=(a-b)^{2}\right]$
$=\frac{(1-\cos \theta)(1-\cos \theta)}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$=\frac{1-\cos \theta}{1+\cos \theta}$
$=$ R.H.S.
L.H.S. $=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$
$=\frac{\cos ^{2} \theta+1+\sin ^{2} \theta+2 \sin A}{(1+\sin A) \cos A}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta+1+2 \sin A}{(1+\sin A) \cos A}$
$=\frac{1+1+2 \sin A}{(1+\sin A) \cos A}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=\frac{2+2 \sin A}{(1+\sin A) \cos A}=\frac{2(1+\sin A)}{(1+\sin A) \cos A}$
$=\frac{2}{\cos A}$
$=2 \sec \mathrm{~A}=$ RHS
(iii) L.H.S.
$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$
$=\frac{\frac{\sin \theta}{\cos }}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin }}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$
$=\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{\sin \theta-\cos \theta}+\frac{\cos \theta}{\sin \theta} \times \frac{\cos \theta}{\cos \theta-\sin \theta}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$
$=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta(\sin \theta-\cos \theta)}$
$=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta(\sin \theta-\cos \theta)}$
$\left[\because a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)\right]$
$=\frac{1+\sin \theta \cos \theta}{\sin \theta \cos \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$1 \sin \theta \cos \theta$
$=\overline{\sin \theta \cos \theta}+\overline{\sin \theta \cos \theta}$
$=\frac{1}{\sin \theta \cos \theta}+1=1+\frac{1}{\sin \theta \cos \theta}$
$=1+\sec \theta \operatorname{cosec} \theta$
(iv)

$$
\frac{1+\sec A}{\sec A}=\frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}}
$$

$$
\begin{aligned}
& =\frac{\frac{\boldsymbol{\operatorname { c o s } A + 1}}{\boldsymbol{\operatorname { c o s } A}}}{\frac{\boldsymbol{1}}{\boldsymbol{\operatorname { c o s }} \boldsymbol{A}}}=\frac{\boldsymbol{\operatorname { c o s } \boldsymbol { A } + \boldsymbol { 1 }}}{\boldsymbol{\operatorname { c o s } \boldsymbol { A }}} \mathbf{X} \frac{\boldsymbol{\operatorname { c o s } \boldsymbol { A }}}{\mathbf{1}} \\
& =\frac{1-\cos ^{2} A}{1-\cos A} \quad\left[\text { Since }(a+b)(a-b)=a^{2}-b^{2}\right] \\
& =\frac{\sin ^{2} A}{1-\cos A}=\text { R.H.S. } \\
& \text { (v) L.H.S. } \frac{1-\cos A}{\cos A-\sin A+1} \\
& \cos A+\sin A-1
\end{aligned}
$$

Dividing all terms by $\sin A$,
$=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}=\frac{\cot A+\operatorname{cosec} A-1}{\cot A-\operatorname{cosec} A+1}$
$=\frac{\cot A+\operatorname{cosec} A-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)}{\cot A+1-\operatorname{cosec} A}$
$=\frac{(\cot A+\operatorname{cosec} A)-(\operatorname{cosec} A+\cot A)(\operatorname{cosec} A-\cot A)}{\cot A+1-\operatorname{cosec} A}$
$=\frac{(\cot A+\operatorname{cosec} A)[1-(\operatorname{cosec} A-\cot A)]}{\cot A+1-\operatorname{cosec} A}$
$=\frac{(\cot A+\operatorname{cosec} A)(1-\operatorname{cosec} A+\cot A\}}{(\cot A+1-\operatorname{cosec} A)}$
$=\cot \mathrm{A}+\operatorname{cosec} \mathrm{A}$
= R.H.S
(vi) L.H.S.
$=\sqrt{\frac{1+\sin A}{1-\sin A}} \times \sqrt{\frac{1+\sin A}{1+\sin A}}$
$=\sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}}\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\sqrt{\frac{(1+\sin A)^{2}}{\cos ^{2} A}}\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]$
$=\frac{1+\sin A}{\cos A}=\frac{1}{\cos A}+\frac{\sin A}{\cos A}$
$=\sec A+\tan A=$ R.H.S.
(vii) L.H.S. $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$
$=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$
$=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left[2\left(1-\sin ^{2} \theta\right)-1\right]}$
$\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]$

$$
\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2-2 \sin ^{2} \theta-1\right)}
$$

$$
=
$$

$=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(1-2 \sin ^{2} \theta\right)}=\frac{\sin \theta}{\cos \theta}$
$=\tan \theta=$ R.H.S
(viii) L.H.S. $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$
$=\left(\sin A+\frac{1}{\sin A}\right)^{2}+\left(\cos A+\frac{1}{\cos A}\right)^{2}$
$=\sin ^{2} A+\frac{1}{\sin ^{2} A}+2 \cdot \sin A \cdot \frac{1}{\sin A}+\cos ^{2} A+\frac{1}{\cos ^{2} A}+2 \cdot \cos A \cdot \frac{1}{\cos A}$
$=2+2+\sin ^{2} A+\cos ^{2} A+\frac{1}{\sin ^{2} A}+\frac{1}{\cos ^{2} A}$
$=4+1+\frac{1}{\sin ^{2} A}+\frac{1}{\cos ^{2} A}$
$=5+\operatorname{cosec}^{2} A+\sec ^{2} A$
$=5+1+\cot ^{2} A+1+\tan ^{2} A$
$\left[\because \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \cdot \sec ^{2} \theta=1+\tan ^{2} \theta\right]$
$=7+\tan ^{2} A+\cot ^{2} A$
= R.H.S.
(ix) L.H.S. $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

$$
\begin{aligned}
& =\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\
& =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \\
& =\frac{\cos ^{2} A}{\sin A} \times \frac{\sin ^{2} A}{\cos A}=\sin A \cdot \cos A \\
& =
\end{aligned}
$$

Dividing all the terms by $\sin A \cdot \cos A$,

$$
=\frac{\frac{\sin A \cdot \cos A}{\sin A \cdot \cos A}}{\frac{\sin ^{2} A}{\sin A \cdot \cos A}+\frac{\cos ^{2} A}{\sin A \cdot \cos A}}
$$

$$
=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}
$$

$$
=\frac{1}{\tan A+\cot A}=\text { R.H.S. }
$$

(x) L.H.S. $\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\frac{\sec ^{2} A}{\operatorname{cosec}^{2} A}$
$\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta, 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\right]$
$=\frac{1}{\cos ^{2} A} \times \frac{\sin ^{2} A}{1}=\tan ^{2} A=$ R.H.S.
Now, Middle side $=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\left(\frac{1-\tan A}{1-\frac{1}{\tan A}}\right)^{2}$
$=\left(\frac{1-\tan A}{\frac{\tan A-1}{\tan A}}\right)^{2}$
$=\left(\frac{1-\tan A}{\frac{-(1-\tan A)}{\tan A}}\right)^{2}$
$=(-\tan \mathrm{A})^{2}$
$=\tan ^{2} \mathrm{~A}-=$ R.H.S

Notes

Chapter 9

Some Applications of Trigonometry

Line of Sight

When an observer looks from a point E (eye) at an object O then the straight line EO between the eye E and the object O is called the line of sight.

Horizontal

When an observer looks from a point E (eye) to another point Q which is horizontal to E , then the straight line, EQ between E and Q is called the horizontal line.

Angle of Elevation

When the eye is below the object, then the observer has to look up from the point E to the object O . The measure of this rotation (angle θ) from the horizontal line is called the angle of elevation.

Angle of Depression

When the eye is above the object, then the observer has to look down from the point E to the object. The horizontal line is now parallel to the ground. The measure of this rotation (angle θ) from the horizontal line is
called the angle of depression.

How to convert the above figure into the right triangle.
Case I: Angle of Elevation is known
Draw OX perpendicular to EQ.
Now $\angle \mathrm{OXE}=90^{\circ}$
$\Delta \mathrm{OXE}$ is a rt. Δ, where
$\mathrm{OE}=$ hypotenuse
$\mathrm{OX}=$ opposite side (Perpendicular)
EX = adjacent side (Base)

Case II: Angle of Depression is known
(i) Draw OQ'parallel to EQ
(ii) Draw perpendicular EX on OQ'.
(iii) Now $\angle \mathrm{QEO}=\angle \mathrm{EOX}=$ Interior alternate angles
$\Delta \mathrm{EXO}$ is an rt. Δ. where
$\mathrm{EO}=$ hypotenuse
OX = adjacent side (base) and EX = opposite side (Perpendicular)

- Choose a trigonometric ratio in such a way that it considers the known side and the side that you wish to calculate.
- The eye is always considered at ground level unless the problem specifically gives the height of the observer.

The object is always considered as a point.
Some People Have
Sin $\theta=$ Perpendicular / Hypotenuse
Curly Black Hair
$\operatorname{Cos} \theta=$ Base / Hypotenuse
Turning Permanent Black.
$\tan \theta=$ Perpendicular / Base

Exercise 9.1

1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.

Sol. In right triangle ABC ,

$\sin 30^{\circ}=\mathrm{AB} / \mathrm{AC} \Rightarrow 1 / 2=\mathrm{AB} / 20$
$\Rightarrow A B=10 \mathrm{~m}$
Hence, the height of the pole is 10 m .
2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.

Sol.

Let AC be the broken part of the tree.
\therefore Total height of the tree $=A B+A C$
In right $\triangle \triangle A B C$,
$\cos 30^{\circ}=\mathrm{BC} / \mathrm{AC}$
$\Rightarrow \sqrt{3} / 2=8 / A C$
$\Rightarrow \mathrm{AC}=16 / \sqrt{3}$
Also,
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{BC}$
$\Rightarrow \Rightarrow 1 / \sqrt{3}=\mathrm{AB} / 8$
$\Rightarrow \Rightarrow A B=8 / \sqrt{ } 3$
Total height of the tree $=A B+A C=16 / \sqrt{ } 3+8 / \sqrt{3}=24 / \sqrt{ } 3=\frac{24 X \sqrt{3}}{\sqrt{3} X \sqrt{3}}=8 \sqrt{3} \mathrm{~m}$
3. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m , and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m , and inclined at an angle of 60° to the ground. What should be the length of the slides in each case?

Sol. In the first case:

Height of slide $=1.5 \mathrm{~m}$ and angle of elevation $=30^{\circ}$
Now,
$\sin \theta=\mathrm{p} / \mathrm{h}$
where $\mathrm{p}=$ perpendicular, i.e. height of the slide and $\mathrm{h}=$ hypotenuse, i.e. length of the slide and θ is the angle of elevation
$\sin 30^{\circ}=1.5 / \mathrm{h}$
$1 / 2=1.5 / \mathrm{h}$
Hence, $\mathrm{h}=3 \mathrm{~m}$
In the second case:

Height of slide, $=3 \mathrm{~m}$, angle of elevation $=60^{\circ}$
$\sin \theta=\mathrm{p} / \mathrm{h}$
$\sin 60^{\circ}=3 / h$
$\sqrt{3} / 2=3 / h$
Hence, $h=2 \sqrt{3} \mathrm{~m}$
Therefore, the length of the slide in the first and the second case are 3 m and $2 \sqrt{3} \mathrm{~m}$ respectively.
4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Sol. In right triangle ABC ,

$$
\tan 30^{\circ}=\mathrm{AB} / \mathrm{BC} \Rightarrow 1 / \sqrt{3}=\mathrm{AB} / 30
$$

$\mathrm{AB}=30 / \sqrt{ } 3 \Rightarrow \mathrm{AB}=10 \sqrt{ } 3 \mathrm{~m}$

Hence, the height of the tower is $10 \sqrt{ } 3 \mathrm{~m}$.
5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60° Find the length of the string, assuming that there is no slack in the string.

Sol.

In right triangle ABC ,
$\sin 60^{\circ}=\mathrm{AB} / \mathrm{AC}$
$\Rightarrow \sqrt{3} / 2=60 / \mathrm{AC}$
$\mathrm{AC}=120 / \sqrt{ } 3$
Multiplying $\sqrt{3}$ in both numerator and denominator,
$\mathrm{AC}=120 \mathrm{X} \sqrt{ } 3 / \sqrt{ } 3 \mathrm{X} \sqrt{ } 3$
$A C=40 \sqrt{3} \mathrm{~m}$
Hence the length of the string is $40 \sqrt{ } 3 \mathrm{~m}$.
6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Sol.

Let AE is the Length of the building.
So $\mathrm{AE}=30$

Again $\mathrm{BE}=\mathrm{DF}=1.5$
$\mathrm{AB}=\mathrm{AE}-\mathrm{BE}=30-1.5=28.5$
Now in triangle ABC ,
$\tan 60^{\circ}=\mathrm{AB} / \mathrm{BC}$
$\Rightarrow \sqrt{3}=28.5 / \mathrm{BC}$
$\Rightarrow \mathrm{BC}=28.5 / \sqrt{ } 3$
Again in triangle ABD
$\tan 30=\mathrm{AB} / \mathrm{BD}$
$1 / \sqrt{3}=28.5 / B D$
$\Rightarrow \mathrm{BD}=28.5 \mathrm{X} \sqrt{ } 3$
$\Rightarrow \mathrm{BC}+\mathrm{CD}=28.5 \sqrt{ } 3$
$\Rightarrow 28.5 / \sqrt{ } 3+\mathrm{CD}=28.5 \sqrt{ } 3$
$\Rightarrow \mathrm{CD}=28.5 \sqrt{ } 3-28.5 / \sqrt{ } 3$
(taking L.C.M)
$\Rightarrow \mathrm{CD}=28.5 \times 3-28.5 / \sqrt{ } 3$
$\Rightarrow \mathrm{CD}=28.5(3-1) / \sqrt{ } 3$
$\Rightarrow \mathrm{CD}=(28.5 \times 2) / \sqrt{ } 3$
$\Rightarrow \mathrm{CD}=(57) / \sqrt{ } 3$
$\Rightarrow C D=(57) X \sqrt{3} / \sqrt{ } 3 \times \sqrt{3}$ (Multiply $\sqrt{3}$ in numerator and denominator)
$\Rightarrow \mathrm{CD}=57 \sqrt{ } 3 / 3$
$\Rightarrow \mathrm{CD}=19 \sqrt{ } 3$
The distance he walked towards the building is $19 \sqrt{3} \mathrm{~m}$
7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower

Sol.

Let BC be the building, AB be the transmission tower, and D be the point on the ground.
In $\triangle B C D$,

$$
\tan 45^{\circ}=\mathrm{BC} / \mathrm{CD}
$$

$$
\Rightarrow 1=20 / \mathrm{CD}
$$

$$
\Rightarrow \mathrm{CD}=20
$$

$$
\text { In } \triangle \mathrm{ACD},
$$

$$
\tan 60^{\circ}=\mathrm{AC} / \mathrm{CD}
$$

$$
\Rightarrow \sqrt{3}=A B+B C / C D
$$

$$
\Rightarrow \sqrt{3}=\mathrm{AB}+20 / 20
$$

$$
\Rightarrow A B+20=20 \sqrt{3}
$$

$$
\Rightarrow A B=20(\sqrt{3}-1) \mathrm{m}
$$

8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45° Find the height of the pedestal.

Sol.

Let the height of the pedestal be h m .
$\therefore \mathrm{BC}=\mathrm{hm}$
In right triangle ACP ,

$$
\begin{align*}
& \tan 60^{0}=\mathrm{AC} / \mathrm{PC} \\
& \Rightarrow \sqrt{ } 3=\mathrm{AB}+\mathrm{BC} / \mathrm{PC} \\
& \Rightarrow \sqrt{ } 3=1.6+\mathrm{h} / \mathrm{PC} \tag{i}\\
& \text { In right triangle } \mathrm{BCP}, \\
& \tan 45^{\circ}=\mathrm{BC} / \mathrm{PC} \\
& \Rightarrow 1=\mathrm{h} / \mathrm{PC} \Rightarrow \mathrm{PC}=\mathrm{h} \\
& \therefore \sqrt{ } 3=1.6+\mathrm{h}[\text { (From eq. } \\
& \Rightarrow \sqrt{ } 3=1.6+\mathrm{h} / \mathrm{h} \Rightarrow \sqrt{ } 3 \mathrm{~h}=1.6+\sqrt{3} \\
& \Rightarrow 1.6=(\sqrt{3}-1) \mathrm{h} \quad \Rightarrow \mathrm{~h}=1.6(\sqrt{3}+1) /(\sqrt{3}-1)(\sqrt{3}+1) \\
& \Rightarrow \mathrm{h}=1.6(\sqrt{3}+1) / 3-1 \Rightarrow \mathrm{~h}=1.6(\sqrt{3}+1) / 2 \\
& \Rightarrow \mathrm{~h}=0.8(\sqrt{3}+1) \mathrm{m}
\end{align*}
$$

9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

Sol. Given,

Let the height of building be $A B$ and height of tower $C D$
Height of the tower $(C D)=50 \mathrm{~m}$
Angle of elevation of top of building from foot of tower $=30^{\circ}$
Hence, $\angle \mathrm{ACB}=30^{\circ}$
Angle of elevation of top of tower from foot of building $=60^{\circ}$
Hence, $\angle \mathrm{DBC}=60^{\circ}$
$\angle \mathrm{ABC}=90^{\circ} \& \angle \mathrm{DCB}=90^{\circ}$
In a right angle triangle DBC ,
$\tan \mathrm{B}=\mathrm{DC} / \mathrm{BC}$
$\tan 60^{0}=50 / B C$
$\mathrm{BC}=50 / \sqrt{ } 3$
Similarly,

In a right angle triangle ABC ,
$\tan \mathrm{c}=\mathrm{AB} / \mathrm{BC}$
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{BC}$
$1 / \sqrt{3}=\mathrm{AB} / 50 / \sqrt{ } 3=\mathrm{AB} \sqrt{3} / 50$
$1 / \sqrt{3} \times 50 / \sqrt{3}=\mathrm{AB}$
$\mathrm{AB}=1 / \sqrt{ } 3 \times 50 / \sqrt{ } 3$
$\mathrm{AB}=50 / \sqrt{3} \mathrm{~m}$
10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

Sol.

Suppose AB and CD are the two poles of equal height $\mathrm{h} \mathrm{m} . \mathrm{BC}$ be the 80 m wide road. P is any point on the road. Let CP be x m ,
therefore $\mathrm{BP}=(80-\mathrm{x})$. Also, $\angle \mathrm{APB}=60^{\circ}$ and $\angle \mathrm{DPC}=30^{\circ}$
In right angled triangle DCP ,
$\tan 30^{\circ}=\mathrm{CD} / \mathrm{CP}$
$\Rightarrow \mathrm{h} / \mathrm{x}=1 / \sqrt{ } 3$
$\Rightarrow \mathrm{h}=\mathrm{x} / \sqrt{ } 3$
In right angled triangle ABP,
$\operatorname{Tan} 60^{\circ}=\mathrm{AB} / \mathrm{PB}$
$\Rightarrow \sqrt{3}=\mathrm{h} / 80^{-\mathrm{x}}$
$\Rightarrow \mathrm{h}=\sqrt{ } 3(80-\mathrm{x})$
$\Rightarrow x / \sqrt{ } 3=\sqrt{ } 3(80-x)$
$\Rightarrow \mathrm{x}=3(80-\mathrm{x})$
$\Rightarrow \mathrm{x}=240-3 \mathrm{x}$
$\Rightarrow \mathrm{x}+3 \mathrm{x}=240$
$\Rightarrow 4 \mathrm{x}=240$
$\Rightarrow \mathrm{x}=60$
Height of the pole, $h=x / \sqrt{3}=60 / \sqrt{3}=20 \sqrt{ } 3$.
Thus, the position of the point P is 60 m from C and the height of each pole is $20 \sqrt{ } 3 \mathrm{~m}$.
11. A TV tower stands vertically on a bank of a canal. From a point on the other bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60° from a point 20 m away from this point on the same bank the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.

Sol.

Let ' h ' $(\mathrm{AB}$) be the height of tower and x be the width of the river In $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\mathrm{h} / \mathrm{x}$
$\Rightarrow h=\sqrt{3} \mathrm{x}$
In $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\mathrm{h} / \mathrm{x}+20$
$\Rightarrow \mathrm{h}=\mathrm{x}+20 / \sqrt{ } 3$
Equating (i) and (ii),
$\sqrt{3} x=x+20 / \sqrt{3}$
$\Rightarrow 3 \mathrm{x}=\mathrm{x}+20$
$\Rightarrow 2 \mathrm{x}=20$
$\Rightarrow \mathrm{x}=10 \mathrm{~m}$
Put $x=10$ in (i),
$h=\sqrt{3} x$
$\Rightarrow \mathrm{h}=10 \sqrt{ } 3 \mathrm{~m}$
12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Sol. In right triangle ABD,

In right triangle AEC,
$\tan 60^{\circ}=\mathrm{CE} / \mathrm{AE}$
$\Rightarrow \sqrt{ } 3=\mathrm{CE} / 7 \Rightarrow \mathrm{CE}=7 \sqrt{ } 3 \mathrm{~m}$
$\therefore \mathrm{CD}=\mathrm{CE}+\mathrm{ED}=\mathrm{CE}+\mathrm{AB}=7 \sqrt{ } 3+7=7(\sqrt{ } 3+1) \mathrm{m}$
Hence height of the tower is $7(\sqrt{3}+1) \mathrm{m}$.
13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between two ships.

Sol. In right triangle ABQ ,

$$
\begin{align*}
& \tan 45^{\circ}=\mathrm{AB} / \mathrm{BQ} \\
& \Rightarrow 1=75 / \mathrm{BQ} \\
& \Rightarrow \mathrm{BQ}=75 \mathrm{~m} \ldots . . . \tag{i}
\end{align*}
$$

In right triangle ABP ,

$$
\begin{aligned}
& \tan 30^{0}=\mathrm{AB} / \mathrm{BP} \\
& \Rightarrow 1 / \sqrt{3}=\mathrm{AB} / \mathrm{BQ}+\mathrm{QP} \\
& \Rightarrow 1 / \sqrt{ } 3=\mathrm{AB} / 75+\mathrm{QP}[\text { From eq. (i) }] \\
& \Rightarrow 75+\mathrm{QP}=75 \sqrt{ } 3 \\
& \mathrm{QP}=75(\sqrt{ } 3-1) \mathrm{m}
\end{aligned}
$$

Hence the distance between the two ships is $75(\sqrt{3}-1) \mathrm{m}$.
14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance traveled by the balloon during the interval.

Sol. As per question:
$\mathrm{AB}=\mathrm{PQ}=88.2-1.2 \mathrm{~m}$ In right triangle ABC , $\tan 60^{\circ}=\mathrm{AB} / \mathrm{BC}$

In right triangle PQC ,
$\tan 30^{\circ}=\mathrm{PQ} / \mathrm{CO}$
$\Rightarrow \tan 30^{\circ}=\mathrm{PQ} / \mathrm{CB}+\mathrm{BQ} \Rightarrow 1 / \sqrt{ } 3=87 / 29 \sqrt{ } 3+\mathrm{BQ} \ldots \ldots$. From (1)
$\Rightarrow 29 \sqrt{ } 3+\mathrm{BQ}=87 \sqrt{3}$
$\Rightarrow \mathrm{BQ}=(87-29) \sqrt{3}$
$\Rightarrow \mathrm{BQ}=58 \sqrt{3} \mathrm{~m}$
Hence, the distance travelled by the balloon during the interval is $58 \sqrt{ } 3 \mathrm{~m}$.
15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching to the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the further time taken by the car to reach the foot of the tower

Sol.

In right triangle ABP ,
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{BP}$
$\Rightarrow 1 / \sqrt{ } 3=\mathrm{AB} / \mathrm{BP}$
$\mathrm{BP}=\mathrm{AB} \sqrt{ } 3$ \qquad
In right triangle ABQ ,
$\tan 60^{\circ}=\mathrm{AB} / \mathrm{BQ}$
$\Rightarrow \sqrt{3}=\mathrm{AB} / \mathrm{BQ}$
$\Rightarrow B Q=A B / \sqrt{ } 3$
$\because P Q=B P-B Q$
$\therefore \mathrm{PQ}=\mathrm{AB} \sqrt{3}-\mathrm{AB} / \sqrt{ } 3=3 \mathrm{AB}-\mathrm{AB} / \sqrt{3}=2 \mathrm{AB} / \sqrt{3}=2 \mathrm{BQ}$ [From eq. (ii)]
$\Rightarrow \mathrm{BQ}=1 / 2 \mathrm{PQ}$
\because Time taken by the car to travel a distance $P Q=6$ seconds.
\therefore Time taken by the car to travel a distance BQ, i.e. $1 / 2 \mathrm{PQ}=1 / 2 \times 6=3$ seconds.
Hence, the further time taken by the car to reach the foot of the tower is 3 seconds.
16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

Sol. Let $\angle \mathrm{APB}=\theta$
Then, $\angle \mathrm{AQB}=90^{\circ}-\theta$
$\because \angle \mathrm{APB}$ and $\angle \mathrm{AQB}$ are complementary
In right triangle ABP ,
$\tan \theta=\mathrm{AB} / \mathrm{PB}$
$\Rightarrow \tan \theta=\mathrm{AB} / 9$
In right triangle ABQ ,
$\tan \left(90^{\circ}-\theta\right)=\mathrm{AB} / \mathrm{QB}$
$\Rightarrow \cot \theta=\mathrm{AB} / 4$

Multiplying (1) and (2), we get
$\mathrm{AB} / 9 \mathrm{XAB} / 4=\tan \theta \mathrm{X} \cot \theta$
$\Rightarrow \mathrm{AB}^{2} / 36=1$
$\Rightarrow \mathrm{AB}^{2}=36 \Rightarrow \mathrm{AB}=\sqrt{ } 36=6 \mathrm{~m}$
Hence, the height of the tower is 6 m .

