•ना International School

Shree Swaminarayan Gurukul, Zundal

Name-

SA-II- MATHS - QUESTION BANK- CLASS-9 Roll No

Class-IX-

MULTIPLE CHOICE QUESTIONS

Chapter - 1

1.	How mar	ny rational n	umbers ca	n be found	between	two distine	ct rational numbers?
a.	Two	b. Ten	l	c. Ze	ro	d.	Infinite
2.	The value	of $\left(2+\sqrt{3}\right)$	$\left(2-\sqrt{3}\right)_{i}$	n			
a.	1		b1		c. 2		d. none of these
3.	$(27)^{-2/3}$ is	equal to				100	
a.	9		b. 1/9		c. 3		d. none of these
4.	Every nat	ural number	is				
a.	not an inte	eger b. alw	ays a who	le number		c. an irrat	ional number
d.	not a frac	tion			-	-	
							R
<u>Cha</u>	pter - 2	1.2	1				
1. √	2 is a polyn	omial of deg	gree				
a. 2	2	b. 0		c. 1		d.	1/2
2. W	/hich of the	following is	quadratic	polynomia	1	111	
a. x	+ 2	b. $x^2 +$	2	с х	$x^{3} + 2$	d. 2	2x + 2
3. T	he zero of th	ne polynomi	al $P(X) =$	2x + 5 is			
a. 2	/5	b. 5/2		c. 0		d.	-5/2
4 If	$P(x) = x^2 - 2$	$\sqrt{2x+1}$, the	en P $(2\sqrt{2})$	is =			
a.	Ó	b. 1		c. 41	/2	d. 8	$8\sqrt{2}$ +1
5 . If	x+1 is a fac	tor of the po	olynomial	$2x^2 + kx, t$	hen the v	alue of k is	5
a	-3	~	b. 4	,	c. 2		d2
6 Th	ne value of 2	$249^2 - 248^2$ i	s				
a. 1	1	b. 477			c. 487		d. 497
7. If	$x^2 + 1/x^2 =$	7, then the	value of If	$x^{3} + 1/x^{3}$ is			
a. 2	27		b. 9		c. 18		d. 36
8. If	a + b + c =	9 and ab+ b	c + ca = 4	0, then the	value of a	$a^2 + b^2 + c^2$	is
a. 1	1	b. 2		c. 3		d.	4
9. Z	ero of the po	olynomial P	$(\mathbf{x}) = \mathbf{c} \mathbf{x} + \mathbf{c} $	-d is			
a(d	bc		c. –d/	′c	d.	-7
<u>Cha</u>	<u>pter -3</u>						
1.	The point	of intersecti	ion of X a	nd Y axes is	s called		

- a. zero point b. origin c. null point d. none of these 2. The distance of the point (-3, -2) from x-axis is
 - a. 2 units b. 3 units c. 5 units d. $\sqrt{13}$ units b. Ans. (a) 2 units

	3.	. The distance of the point $(-6, -2)$ fr	om y-axis is	
	4.	a. 6 units b. $\sqrt{38}$ units c. Ans. (a) 6 units The abscissa and ordinate of the poi	c. 2 units nt with Co-ordinates (8, 12) is	d. 8 units
		a. abscissa 12 and ordinate 8d. abscissa 0 and ordinate 20	b. abscissa 8 and ordi c. none of these	nate 12
Cha	pte	r – 6		
	1.	Measurement of reflex angle is		
	a.	90°	c. between 0° and 90°	
	b.	between 90° and 180°	d between 180° and 360°	
	2.	The sum of angle of a triangle is		
		a. 0° b. 90°	c. 180°	d. none of these
	3	In fig if $x = 30^\circ$ then $y =$		
	5.	In fight x= then y=		
		1		
		y		
		X		
			SI	
	a.	90° b. 180°	c. 150°	d. 210°
	4.	If two lines intersect each other the		
	a.	vertically opposite angles are equal	c. correspond	ing angle are equal
	b.	alternate interior angle are equal	d. none of the	ese
	5.	The measure of Complementary ang	the of 63° is	
	5. a	The measure of Complementary ang 30° b 36°	$c 27^{\circ}$	d none of there
	5. a.	The measure of Complementary ang 30° b. 36°	c. 27°	d. none of there
Cha	5. a. p te	The measure of Complementary ang 30° b. 36° r- 7	c. 27°	d. none of there
<u>Cha</u> j	5. a. pte	The measure of Complementary ang 30° b. 36° <u>r- 7</u>	c. 27°	d. none of there
<u>Cha</u>	5. a. pte	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu	ele of 63° is c. 27° adrilateral:	d. none of there
<u>Cha</u>	5. a. pte 1.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360°	c. 27° c. 27° adrilateral: c. 180° d. 90°	d. none of there
<u>Cha</u>	5. a. pte 1. 2. '	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle with	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be:	d. none of there
<u>Cha</u> 1 2 2 2	5. a. pte 1. a. 2.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle with 360° b. 270°	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90°	d. none of there
<u>Cha</u>	5. a. pte 1. a. 2.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle wi 360° b. 270° An angle is 14° more than its comple	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90° ment. Find its measure.	d. none of there
<u>Cha</u> 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5. a. pte 1. a. 2. 3.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle with 360° b. 270° An angle is 14° more than its complet 42 b. 32	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90° ment. Find its measure. c. 52 d. 62	d. none of there
Chaj 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5. a. pte 1. a. 3. 4.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a que 260° b. 360° The sum of the angles of a triangle with 360° b. 270° An angle is 14° more than its complement. Find 42 b. $32An angle is 4 time its complement. Find43$	c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90° ment. Find its measure. c. 52 d. 62 nd measure.	d. none of there
<u>Cha</u> 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5. a. pte 1. a. 3. 4. 4.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle wi 360° b. 270° An angle is 14° more than its comple 42 b. 32 An angle is 4 time its complement. Fi 62 b. 72	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90° ment. Find its measure. c. 52 d. 62 nd measure. c. 52	d. none of there d. 42
<u>Cha</u> 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5. a. pte 1. a. 3. 4. 5.	The measure of Complementary ang 30° b. 36° <u>r-7</u> What is the sum of the angles of a qu 260° b. 360° The sum of the angles of a triangle wi 360° b. 270° An angle is 14° more than its comple 42 b. 32 An angle is 4 time its complement. Fi 62 b. 72 Find the measure of angles which is e	the of 63° is c. 27° adrilateral: c. 180° d. 90° ll be: c. 180° d. 90° ment. Find its measure. c. 52 d. 62 nd measure. c. 52 qual to its supplementary.	d. none of there d. 42

<u>Chapter – 8</u>

- 1. A quadrilateral ABCD is a parallelogram if
- a. AB = CD b. $AB \parallel_{BC}$ c. $\angle A = 60^{\circ}, \angle C = 60^{\circ}, \angle B = 120^{\circ}$ d. AB = AD
- 2. In figure, ABCD and AEFG are both parallelogram if $\angle C = 80^{\circ}$, then $\angle DGF$ is

3. How many circle passing t	hrough three non-colli	near points			
a. one	b two	c three	d. four		
4. The constant distance is ca	lled				
a. diameter	b radius	c. centre	d. circle		
5. PS and RS are two chord's distance between PQ and RS	s of a circle such that F is 17cm. Find the radi	PQ=10cm and RS= 24c us of circle	em and PQ RS. The		
a. 10cm	b 13cm	c 15cm	d. none of these		
6. A circle is drawn. It divide	s the plane into				
a. 3 Parts	b. 4 Parts	c. 5 Parts	d. No Parts		
7. The relation between diam	eter and radius of a cir	cle is			
a. r = 2d	b. $d = r$	c. $d = 2 r$	d. d= $2\pi r$		
8. If P and Q are any two Points on a circle then PQ is called a					
a. diameter	b. secant	c. chord	d. radius		
9. The whole arc of a circle i	9. The whole arc of a circle is called				
a. circumference	b. semi-circle	c. sector	d. segment		

*Short Answer

[2 marks each]

1. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

2. Classify the following as linear, quadratic and cubic polynomials:

(i) $x^{2}+x$	(ii) $x - x^3$	(iii) $y + y^2 + 4$	(iv) 1 + x
(v) 3t	(vi) r^2	(vii) $7x^3$	(viii) 3x+5

3. Find the value of the polynomial $5x - 4x^2 + 3$ at

(i) $x = 0$	(ii) x = -1	(iii) $x = 2$	(iv) $x = \frac{1}{2}$

4. Find the zero of the polynomials:

(i) P(x) = 3x - 2 (ii) P(x) = x - 5 (iii) P(x) = 2x + 7 (iv) P(x) = ax + b

5. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by

(i) x + 1 (ii) $x - \frac{1}{2}$ (iii) $x + \pi$ (iv) 2x + 5

6. Expand, Using suitable identities:

(i) $(x+2y+4z)^2$ (ii) $(2x-y+z)^2$

7. Using factor theorem to determine g(x) is factor of p(x)

 $P(x) = x^3 - 4x^2 + x + 6$, g(x) = x - 2

8. Recall that two circles are congruent if they have a same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

9. In figure, A, B, C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$, $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.

10. In given figure, $\angle ABC = 69^\circ$, $\angle ACB = 31^\circ$, find $\angle BDC$.

11. In figure, if $\angle DAB = 60^\circ$, find $\angle ACB$

12. Find six rational numbers between 3 and 4.

13. Find the value of the polynomial $5x - 4x^2 + 3$ at x = 0, x = 1 and x = 2

1. $x^2+13x+30$ 2. $x^2+33x+260$ 3. $x^2+17x+30$ 4. $x^2+18x+77$ 5. $x^2-19x+90$ 6. $x^2-7x+12$ 7. $x^2+7x-60$ 8. $x^2-8x-48$

9. $x^2 - 9x - 36$ 10. $x^2 - 2x + 120$ 11. $x^2 - 3x - 70$ 12. $x^2 - 5x - 150$ 15. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ divided by $x^2 - 2x + k$, the remainder come out to be x + a. Find k and a

16. Find whether 2 is a zero of the polynomial $x^3 + 4x^2 - 3x - 18$ or not.

17. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all angles of the quadrilateral.

18. Recall that two circles are congruent if they have a same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.19.

Draw different pairs of circles. How many points does each pair have in common? What is a maximum number of common points? 20.

If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD.

*Short Answer

1). Divide the polynomials:-

i. $3x^4 - 4x^3 - 3x - 1$ by x - 1

ii.
$$X^3 + 1$$
 by $x + 1$

2). Factorise :

```
i. 49a^2 + 70ab + 25b^2
```

```
ii. 25/4x^2 - y^2/9
```

```
iii. 12x^2 - 7x + 1
```

- iv. $6x^2 + 5x 6$
- v. $X^3 + 13x^2 + 32x + 20$

3) Find the value of K, if x-1 is a factor of p(x) in each of the following cases:

i.
$$P(x)=x^2 + x + k$$

ii. $P(x)=kx^2 - 3x + k$
iii. $P(x)=kx^2 - \sqrt{2x} + 1$

4) Expand using suitable identity:

(i) $(x + 2y + 4z)^2$ (ii) $(2x - y + z)^2$ (iii) $(3a - 7b - c)^2$ (iv) $(-2x + 5y - 3z)^2$ 5) Factorise: (i) $2x^2 + 7x + 3$ (ii) $12x^2 - 7x + 1$ (iii) $3x^2 - x - 4$ 6) Factorise: $27x^3 + y^3 + z^3 - 9xyz$

[3 marks each]

7) Given below are the seats won by different political parties in the polling outcome of a state assembly elections:

Political party	А	В	С	D	E	F
Seats won	75	55	37	29	10	37

i. Draw a bar graph to represent the polling results.

Which political party won the maximum number of seats?

8) The following data on the number of girls (to the nearest ten) per thousand boys in different sections of the society is given below :

Section	Number of girls per thousand boys
Scheduled caste	940
scheduled tribe	970
Non SC/ST	920
Backward districts	950
Non-backward districts	920
Rural	930
Urban	910

1.1.1.1.1.1

i. Represent the information above by a bar graph.

36.19

In the classroom discuss what conclusion can be arrived at from the graph.

9) A family with a monthly income of \gtrless 20,000 had planned the following expenditures per month under various heads:

Heads	Expenditure (in thousand rupees)
Grocery	4
Rent	5
Education of children	5
Medicine	5
Fuel	2
Entertainment	1
Miscellaneous	1

Draw a bar graph for the data above.

10) If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

11) If two equal chords of a circle intersect within a circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

12.

If two equal chords of a circle intersect within a circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

13. In figure, A, B, C are three points on a circle with centre O such that $\angle BOC = 30^\circ$, $\angle AOB = 60^\circ$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.

14.

In figure, $\angle PQR=100\circ$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$

15.

The diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.

16.

Curved surface area of a cone is 308 cm^2 and its slant height is 14 cm. Find the radius of the base

[4 marks each]

17.

Find the capacity in litres of a conical vessel with radius 7 cm, slant height 25 cm.

*Long Answer

1). Factorise:

i.
$$8x^3 + 27y^3 + 36x^2y + 54xy^2$$

ii. $8x^3 + y^3 + 27z^3 - 18xyz$

2). Verify:

i.
$$X^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

ii.
$$X^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

3). Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

i. Area : $25a^2 - 35a + 12$

ii. Area :
$$35y^2 + 13y - 12$$

4). What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

- i. Volume : $3x^2 12x$
- ii. Volume : $12ky^2 + 8ky 20k$

S.No.	Causes	Female fatality rate (%)
1	Reproductive health conditions	31.8
2	Neuropsychiatric conditions	25.4
3	Injuries	12.4
4	Cardiovascular conditions	4.3
5	Respiratory conditions	4.1
6	Other causes	22.0

5) between the ages 15-44 (in years) worldwide, found the following figures (in %) :

- i. Represent the information given above graphically.
- ii. Which condition is the major cause of women's ill health and death worldwide?

Try to find out, with the help of your teacher, any two factors which play a major role in the cause in (ii) above being the major cause.

6) A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 - 20, 20 - 30, . . ., 60 - 70, 70 - 100. Then she formed the

foll	lowing	tab	e٠

Marks	Number of students
0 - 20	7
20 - 30	10
30-40	10
40 - 50	20
50 - 60	20
60 - 70	15
70 - above	8
Total	90

Draw a histogram for this table?

7. The volume of a right circular cone is 9856 cm3. If the diameter of the base if 28 cm, find:

- i. Height of the cone
- ii. Slant height of the cone
- iii. Curved surface area of the cone.

8. The diameter of the moon is approximately one-fourth the diameter of the earth. What fraction is the volume of the moon of the volume of the earth?

Case Study Questions [5 marks]

(i)Read the Source/Text given below and answer any four questions: In an effort to provide high-quality and safe playgrounds for kids, our reputable manufacturers adhere to the playground safety guidelines set forth by the Indian Consumer Product Safety Commission (CPSC) and the Indian Society for Advancement of Materials and Processing Engineering (ISAMPE). These organizations set the guidelines for determining the types of playground equipment that is appropriate for kids within specific age groups: 2-3 years, 3-5 years, 5-7 years, 7-10 years, 10-15 years, and 15-17 years. A random survey of the number of children of various age groups playing in a park was found as follows:

Age (in years)	Number of children
1-2	5
2-3	3
3 – 5	6
5 – 7	12
7 - 10	9
10 - 15	10
15 - 17	4

the histogram is as given below:

1. In this question, the class sizes are different. So, calculate the adjusted frequency for each class by using the following formula:

Frequency density or adjusted frequency for class =

- a. Minimum class size /Class size of this class × Its Frequency
- b. Minimum class mark /Class size of this class × Its Frequency
- c. Minimum Frequency /Class size of this class × Its class size
- d. Minimum class mark /Class mark of this class
- 2. In this question the minimum class size is

3.	a. 0 The class	b. 1 s limits of third class interval 3-5	c. 2	d. 3	
	a. le	ower limit =5, upper limit = 3	b. lowe	er limit =5, upper lim	nit = 7

d. lower limit =7, upper limit = 5

c lower limit = 3, upper limit = 5

4. Adjusted Frequency for class interval 5-7 and 7-10

5.	a. 3, 6 Find the class m	b. 3, 3 nark of class 15 - 17	c. 6, 6	d. 6, 3	
	a. 16	b. 12	c. 25	d. 2	

2. Read the Source/Text given below and answer the questions:

Four students of class IX B with names Ajay, Babloo, Charan and Deepak are playing a game in a circular playground.

All four students are holding radios with speaker and mic. These radios are connected by a wire of equal length that is 11 m (for each radio). Ajay Asks a question to Babloo. If Babloo gives the correct answer he gets 10 points and asks a new question to Charan, If he can not answer then he passes the same question to Charan and gets no points.

These conditions apply to all four players. After 10 rounds who gets maximum points, he becomes the winner.

Answer Key:

- i. (a) 7 m
- ii. (b) 154 m²
- iii. (d) 38.5 m²
- iv. (c) 44 m
- v. (d) 14 m

3. Read the passage given below and answer any four questions:

Once four friends Rahul, Arun, Ajay and Vijay went for a picnic at a hill station. Due to peak

season, they did not get a proper hotel in the city. The weather was fine so they decided to make a conical tent at a park. They were carrying 300 m² cloth with them. As shown in the figure they made the tent with height 10 m and diameter 14 m. The remaining cloth was used for the floor.

i.	How much Cloth was used for the floor?					
	a.	31.6 m ²	b.16 m ²	c. 10 m ²	d. 20 m ²	
ii.	What was the volume of the tent?					
	a.	300 m ³	b. 160 m ³	c. 513.3 m ³	d. 500 m ³	
iii.	What was the area of the floor?					
	a.	50 m²	b. 100 m ²	c. 150 m ²	d. 154 m ²	
iv.	What was the total surface area of the tent?					
	a.	400 m²	b. 422.4 m ²	c. 300 m ²	d. 400 m ²	
v.	What was the latent height of the tent?					
	a.	12 m	b. 12.2 m	c. 15 m	d. 17 m	
Answ	ver Key	•				

- i. (a) 31.6 m^2
- ii. (c) 513.3 m^3
- iii. (d) 154 m^2
- iv. (b) 422.4 m^2
- v. (b) 12.2 m

4. Read the Source/Text given below and answer any four questions:

There is a Diwali celebration in the DPS school Janakpuri New Delhi. Girls are asked to prepare Rangoli in a triangular shape. They made a rangoli in the shape of triangle ABC. Dimensions of \triangle ABC are 26 cm, 28 cm, 25 cm.

- i. In fig, R is mid-point of AB and RQ || BC then AQ is equal to
 - a. BC
 - b. RB
 - c. QC
 - d. AD
- ii. In fig R and Q are mid-points of AB and AC respectively. The length of RQ is:
 - a. 14
 - b. 13
 - c. 12.5
 - d. 13.5
- iii. If Garland is to be placed along the side of \triangle QPR which is formed by joining midpoint, what is the length of garland
 - a. 79 cm
 - b. 39.5 cm
 - c. 35 cm
 - d. 79.5 cm
- iv. In the following figure R, P and Q are the mid-points of AB, BC, and AC respectively. Which of the following is the area of Δ PQR?
 - a. 12ar(ABC)
 - b. 13ar(ABC)
 - c. 14ar(ABC)
 - d. 16ar(ABC)
- v. R, P, Q are the mid-points of corresponding sides AB, BC, CA in \triangle ABC, the figure so obtained BPQR will be:
 - a. parallelogram
 - b. trapezium
 - c. quadrilateral
 - d. none of these

Answer Key:

- i. (c) QC
- ii. (a) 14
- iii. (b) 39.5
- iv. (c) 1/4ar(ABC)
- v. (a) parallelogram