

yु•ना International School Shree Swaminarayan Gurukul, Zundal

<u>Mathematics</u>

Give reason for each.

Ans. Since, Histogram is a graphical representation of data, if data represented in manner of classinterval.

Therefore, for case (b) and (d), we would use a histogram to show the data, because in these cases, data can be divided into class-intervals.

In case (b), a group of competitions having different heights in an athletics meet.

In case (d), the number of passengers boarding trains in an interval of one hour at a station.

2. The shoppers who come to a departmental store are marked as: man (M), woman (W), boy (B) or girl (G). The following list gives the shoppers who came during the first hour in the morning.

W WW G B W W M G G M M W WWW G B M W B G G M W W M M W WW M W B W G M W WWW G W M M W G W M G W M G W M M B G G W.

Make a frequency distribution table using tally marks. Draw a bar graph to illustrate it. Ans. The frequency distribution table is as follows:

Shopper	Tally Marks	Number of shoppers
W	INU INU INU INU INU INI	28
M	INI THI THI	15
в	184	5
G	NU ISU U	12
	Total	60

The illustration of data by bar-graph is as follows:

3. The weekly wages (in `) of 30 workers in a factory are:

830, 835, 890, 810, 835, 836, 869, 845, 898, 890, 820, 860, 832, 833, 855, 845, 804, 808, 812, 840, 885, 835, 835, 836, 878, 840, 868, 890, 806, 840.

Using tally marks, make a frequency table with intervals as 800 – 810, 810 – 820 and so on. Ans. The representation of data by frequency distribution table using tally marks is as follows: 4. Draw a histogram for the frequency table made for the data in Question 3 and answer the following questions.

(i) How many workers earn ` 850 and more?

(ii) How many workers earn less than `850?

Ans. 830 - 840 group has the maximum number of workers.

(i) 10 workers can earn more than `850.

(ii) 20 workers earn less than `850.

5. The number of hours for which students of a particular class watched television during holidays is shown through the given graph. We draw the histogram for above frequency table:

Answer the following:

(i) For how many hours did the maximum number of students watch T.V.?
(ii) How many students watched TV for less than 4 hours?
(iii) How many students spent more than 5 hours in watching TV?
Ans. (i) The maximum number of students watched T.V. for 4 - 5 hours.
(ii) 34 students watched T.V. for less than 4 hours.
(iii) 14 students spent more than 5 hours in watching T.V.

(Ex. 5.2)

1. A survey was made to find the type of music that a certain group of young people liked in a city.

Adjoining pie chart shows the findings of this survey.

From this pie chart, answer the following:

(i) If 20 people liked classical music, how many young people were surveyed?

(ii) Which type of music is liked by the maximum number of people?

(iii) If a cassette company were to make 1000 CD's, how many of each type would they make? Ans. (i) 10% represents 100 people.

 100×20

Therefore 20% represents = 10

= 200 people

Hence, 200 people were surveyed.

(ii) Light music is liked by the maximum number of people.

(iii) CD's of classical music = $\frac{10 \times 1000}{100}$ = 100

20×1000	**********
CD's of semi-classical music = $\frac{100}{100}$ = 200	
CD's of light music = $\frac{40 \times 1000}{100} = 400$	
CD's of folk music = $\frac{30 \times 1000}{100} = 300$	

2. A group of 360 people were asked to vote for their favourite season from the three seasons rainy, winter and summer.

(i) Which season got the most votes?

(ii) Find the central angle of each sector.

(iii) Draw a pie chart to show this information.

Season	Number of votes
Summer	90
Rainy	120
Winter	150

Ans. (i) Winter season got the most votes.

$$\frac{90^{\circ} \times 360^{\circ}}{2} = 90^{\circ}$$

(ii) Central angle of summer season = 360^{*} Central angle of rainy season

$$=\frac{120^{\circ}\times360^{\circ}}{360^{\circ}}=120$$

Central angle of winter season

$$=\frac{150^{\circ}\times360^{\circ}}{360^{\circ}}=150^{\circ}$$

Season	Number of votes	In fraction	Central angle
Summer	90	<u>90</u> 360	$\frac{90}{360} \times 360^\circ = 90^\circ$
Rainy	120	$\frac{120}{360}$	$\frac{120}{360} \times 360^\circ = 120^\circ$
Winter	150	$\frac{150}{360}$	$\frac{150}{360} \times 360^\circ = 150^\circ$

(iii)

3. Draw a pie chart showing the following information. The table shows the colours preferred by a group of people.

Colours	Number of people
Blue	18
Green	9
Red	6
Yellow	3
Total	36

Ans. Here, central angle = 360° and total number of people = 360°

Colours	Number of people	In fraction	Central angle
Blue	18	$\frac{18}{36}$	$\frac{18}{36} \times 360^\circ = 180^\circ$
Green	9	$\frac{9}{36}$	$\frac{9}{36} \times 360^\circ = 90^\circ$
Red 6		$\frac{6}{36}$	$\frac{6}{36} \times 360^\circ = 60^\circ$
Yellow	3	$\frac{3}{36}$	$\frac{3}{36} \times 360^\circ = 30^\circ$

4. The adjoining pie chart gives the marks scored in an examination by a student in Hindi, English, Mathematics, Social Science and Science. If the total marks obtained by the students were 540, answer the following questions:

(i) In which subject did the student score 105 marks?

(Hint: for 540 marks, the central angle = ^{360°}. So, for 105 marks, what is the central angle?) (ii) How many more marks were obtained by the student in Mathematics than in Hindi? (iii) Examine whether the sum of the marks obtained in Social Science and Mathematics is more than that in Science and Hindi. (Hint: Just study the central angles)

Ans.

90° 65°	$\frac{90^{\circ}}{360^{\circ}} \times 540 = 135$ $\frac{65^{\circ}}{260^{\circ}} \times 540 = 97.5$
65°	$\frac{65^{\circ}}{260^{\circ}} \times 540 = 97.5$
	300
80°	$\frac{80^{\circ}}{360^{\circ}} \times 540 = 120$
70°	$\frac{70^{\circ}}{360^{\circ}} \times 540 = 105$
55°	$\frac{55^{\circ}}{360^{\circ}} \times 540 = 82.5$
	55°

(i) The student scored 105 marks in Hindi.(ii) Marks obtained in Mathematics = 135 Marks obtained in Hindi = 105

Difference = 135 - 105 = 30

Thus, 30 more marks were obtained by the student in Mathematics than in Hindi.

(iii) The sum of marks in Social Science and Mathematics = 97.5 + 135 = 232.5The sum of marks in Science and Hindi = 120 + 105 = 225

Yes, the sum of the marks in Social Science and Mathematics is more than that in Science and Hindi.

5. The number of students in a hostel, speaking different languages is given below. Display the data in a pie chart.

Language	Hindi	English	Marathi	Tamil	Bengali	Total
Number of students	40	12	9	7	4	72

Ans.

Language	Number of students	In fraction	Central angle
Hindi	40	$\frac{40}{72}$	$\frac{40}{72}_{\times 360^{\circ}=200^{\circ}}$
English	12	$\frac{12}{72}$	$\frac{12}{72} \times 360^\circ = 60^\circ$
Marathi	9	$\frac{9}{72}$	$\frac{9}{72} \times 360^\circ = 45^\circ$
Tamil	7	$\frac{7}{72}$	$\frac{7}{72} \times 360^\circ = 35^\circ$
Bengali	4	<u>4</u> 72	$\frac{4}{72} \times 360^\circ = 20^\circ$

Pie chart at above given data is as follows.

(Ex. 5.3)

List the outcomes you can see in these experiments.
 (a) Spinning a wheel (b) Tossing two coins together

Ans. (a) There are four letters A, B, C and D in a spinning wheel. So there are 4 outcomes. **(b)** When two coins are tossed together. There are four possible outcomes HH, HT, TH, TT. (Here HT means head on first coin and tail on second coin and so on.)

2. When a die is thrown, list the outcomes of an event of getting:

- (i) (a) a prime number
- (b) not a prime number
- (ii) (a) a number greater than 5

(b) a number not greater than 5

Ans. (i) (a) Outcomes of event of getting a prime number are 2, 3 and 5. (b) Outcomes of event of not getting a prime number are 1, 4 and 6.

(ii) (a) Outcomes of event of getting a number greater than 5 is 6.(b) Outcomes of event of not getting a number greater than 5 are 1, 2, 3, 4 and 5.

3. Find the:

(a) Probability of the pointer stopping on D in (Question 1 (a)).
(b) Probability of getting an ace from a well shuffled deck of 52 playing cards.
(c) Probability of getting a red apple. (See figure alongside)
Ans. (a) In a spinning wheel, there are five pointers A, A, B, C, D. So there are five outcomes. Pointer stops at D which is one outcome.

So the probability of the pointer stopping on $D = \overline{5}$

(b) There are 4 aces in a deck of 52 playing cards. So, there are four events of getting an ace.

So, probability of getting an ace = $\frac{4}{42} = \frac{1}{4}$

(c) Total number of apples = 7 Number of red apples = 4

Probability of getting red apple = $\overline{7}$

4. Numbers 1 to 10 are written on ten separate slips (one number on one slip), kept in a box and mixed well. One slip is chosen from the box without looking into it. What is the probability of:(i) getting a number 6.

(ii) getting a number less than 6.

(iii) getting a number greater than 6. (iv) getting a 1-digit number. Ans. (i) Outcome of getting a number 6 from ten separate slips is one. Therefore, probability of getting a number $6 = \frac{1}{10}$ (ii) Numbers less than 6 are 1, 2, 3, 4 and 5 which are five. So there are 5 outcomes. Therefore, probability of getting a number less than $6 = \frac{5}{10} = \frac{1}{2}$ (iii) Number greater than 6 out of ten that are 7, 8, 9, 10.So there are 4 possible outcomes. Therefore, probability of getting a number greater than $6 = \frac{4}{10} = \frac{2}{5}$ (iv) One digit numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9 out of ten. Therefore, probability of getting a 1-digit number $= \frac{9}{10}$

5. If you have a spinning wheel with 3 green sectors, 1 blue sector and 1 red sector, what is the probability of getting a green sector? What is the probability of getting a none-blue sector? Ans. There are five sectors. Three sectors are green out of five sectors.

Therefore, probability of getting a green sector = 5

There is one blue sector out of five sectors.

Non-blue sectors = 5 - 1 = 4 sectors

Therefore, probability of getting a non-blue sector = $\overline{5}$

6. Find the probability of the events given in Question 2.
Ans. When a die is thrown, there are total six outcomes, i.e., 1, 2, 3, 4, 5 and 6.
(i) (a) 2, 3, 5 are prime numbers. So there are 3 outcomes out of 6.

 $\frac{3}{6} = \frac{1}{2}$

Therefore, probability of getting a prime number = 6

(b) 1, 4, 6 are not the prime numbers. So there are 3 outcomes out of 6.

Therefore, probability of getting a prime number = $\frac{6}{2}$

(ii) (a) Only 6 is greater than 5. So there is one outcome out of 6.

Therefore, probability of getting a number greater than 5 = 6

(b) Numbers not greater than 5 are 1, 2, 3, 4 and 5. So there are 5 outcomes out of 6.

5

Therefore, probability of not getting a number greater than 5 = 6

- SUMMARY
- INTRODUCTION
- SQUARE OF NUMBERS
- SQUAREROOTS OF NUMBER

• INTRODUCTION:

NUMBER	EXPANDED FORM	SQUARE ROOT
1	1x1	1
2	2x2	4
3	3x3	9
4	4x4	16
5	5x5	25
6	6x6	36
7	7x7	49

(Exercise 6.1)

What will be the unit digit of the squares of the following numbers:

 (i) 81
 (ii) 272
 (iii) 799
 (iv) 3853
 (v) 1234
 (vi) 26387
 (vii) 52698
 (viii) 99880
 (ix) 12796
 (x) 55555
 Ans. (i) The number 81 contains its unit's place digit 1. So, square of 1 is 1.

Hence, unit's digit of square of 81 is 1.

(ii) The number 272 contains its unit's place digit 2. So, square of 2 is 4. Hence, unit's digit of square of 272 is 4.

(iii) The number 799 contains its unit's place digit 9. So, square of 9 is 81. Hence, unit's digit of square of 799 is 1.

(iv) The number 3853 contains its unit's place digit 3. So, square of 3 is 9. Hence, unit's digit of square of 3853 is 9.

(v) The number 1234 contains its unit's place digit 4. So, square of 4 is 16. Hence, unit's digit of square of 1234 is 6.

(vi) The number 26387 contains its unit's place digit 7. So, square of 7 is 49. Hence, unit's digit of square of 26387 is 9.

(vii) The number 52698 contains its unit's place digit 8. So, square of 8 is 64. Hence, unit's digit of square of 52698 is 4.

(viii) The number 99880 contains its unit's place digit 0. So, square of 0 is 0. Hence, unit's digit of square of 99880 is 0.

(ix) The number 12796 contains its unit's place digit 6. So, square of 6 is 36. Hence, unit's digit of square of 12796 is 6.

(x) The number 55555 contains its unit's place digit 5. So, square of 5 is 25. Hence, unit's digit of square of 55555 is 5.

2. The following numbers are obviously not perfect squares. Give reasons.
(i) 1057
(ii) 23453
(iii) 7928
(iv) 222222
(v) 64000
(vi) 89722
(vii) 222000
(viii) 505050
Ans. (i) Since, perfect square numbers contain their unit's place digit 1, 4, 5, 6, 9 and even numbers of 0.
Therefore 1057 is not a perfect square because its unit's place digit is 7.

(ii) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 23453 is not a perfect square because its unit's place digit is 3.
(iii) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 7928 is not a perfect square because its unit's place digit is 8.
(iv) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 222222 is not a perfect square because its unit's place digit is 2.
(v) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 64000 is not a perfect square because its unit's place digit is 2.

(vi) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 89722 is not a perfect square because its unit's place digit is 2. (vii) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 222000 is not a perfect square because its unit's place digit is triple 0.

(viii) Since, perfect square numbers contain their unit's place digit 0, 1, 4, 5, 6, 9 and even number of 0. Therefore 505050 is not a perfect square because its unit's place digit is 0.

3. The squares of which of the following would be odd number:
(i) 431
(ii) 2826
(iii) 7779
(iv) 82004
Ans. (i) 431 – Unit's digit of given number is 1 and square of 1 is 1. Therefore, square of

431 would be an odd number.
(ii) 2826 – Unit's digit of given number is 6 and square of 6 is 36. Therefore, square of 2826 would not be an odd number.

(iii) 7779 – Unit's digit of given number is 9 and square of 9 is 81. Therefore, square of 7779 would be an odd number.

(iv) $82004 - \text{Unit's digit of given number is 4 and square of 4 is 16. Therefore, square of 82004 would not be an odd number.$

4. Observe the following pattern and find the missing digits: $11^{2} = 121$ $101^{2} = 10201$ $1001^{2} = 1002001$ $100001^{2} = 1.....2...1$


```
1000000^{2} = 1....

Ans. 11^{2} = 121

101^{2} = 10201

1001^{2} = 1002001

100001^{2} = 10000200001
```

 $1000000^2 = 100000020000001$

5. Observe the following pattern and supply the missing numbers: $11^2 = 121$ $101^2 = 10201$ $10101^2 = 102030201$ $1010101^2 =^2 = 10203040504030201$ Ans. $11^2 = 121$ $101^2 = 10201$ $10101^2 = 102030201$ $1010101^2 = 1020304030201$

6. Using the given pattern, find the missing numbers:

```
1^{2} + 2^{2} + 2^{2} = 3^{2}
2^{2} + 3^{2} + 6^{2} = 7^{2}
3^{2} + 4^{2} + 12^{2} = 13^{2}
4^{2} + 5^{2} + 2^{2} = 21^{2}
5^{2} + 2^{2} + 30^{2} = 31^{2}
6^{2} + 2^{2} + 2^{2} = 43^{2}
Ans. 1^{2} + 2^{2} + 2^{2} = 3^{2}
2^{2} + 3^{2} + 6^{2} = 7^{2}
3^{2} + 4^{2} + 12^{2} = 13^{2}
```

 $4^{2} + 5^{2} + 20^{2} = 21^{2}$ $5^{2} + 6^{2} + 30^{2} = 31^{2}$ $6^{2} + 7^{2} + 42^{2} = 43^{2}$

7. Without adding, find the sum: (i) 1+3+5+7+9(ii) 1+3+5+7+9+11+13+15+17+19(iii) 1+3+5+7+9+11+13+15+17+19+21+23Ans. (i) Here, there are five odd numbers. Therefore square of 5 is 25. $\therefore 1+3+5+7+9=5^2=25$

(ii) Here, there are ten odd numbers. Therefore square of 10 is 100.

 $\therefore 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 10^{2} = 100$

(iii) Here, there are twelve odd numbers. Therefore square of 12 is 144.

 $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 12^{2} = 144$

8. (i) Express 49 as the sum of 7 odd numbers. (ii) Express 121 as the sum of 11 odd numbers. Ans. (i) 49 is the square of 7. Therefore it is the sum of 7 odd numbers. 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13

(ii) 121 is the square of 11. Therefore it is the sum of 11 odd numbers

121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21

9. How many numbers lie between squares of the following numbers:
(i) 12 and 13
(ii) 25 and 26
(iii) 99 and 100

19

Ans. (i) Since, non-perfect square numbers between n^2 and $(n+1)^2$ are 2n. Here, n = 12

Therefore, non-perfect square numbers between 12 and $13 = 2n = 2 \times 12 = 24$

(ii) Since, non-perfect square numbers between n^2 and $(n+1)^2$ are 2n. Here, n = 25

Therefore, non-perfect square numbers between 25 and $26 = 2n = 2 \times 25 = 50$

(iii) Since, non-perfect square numbers between n^2 and $(n+1)^2$ are 2n. Here, n = 99

Therefore, non-perfect square numbers between 99 and $100 = 2n = 2 \times 99 = 198$

(Ex. 6.2)

1. Find the squares of the following numbers: (i) 32 (ii) 35 (iii) 86 (iv) 93 (v) 71 (vi) 46 Ans. (i) $(32)^2 = (30+2)^2 = (30)^2 + 2 \times 30 \times 2 + (2)^2$ $[\because (a+b)^2 = a^2 + 2ab + b^2]$ = 900 + 120 + 4 = 1024

(ii)
$$(35)^2 = (30+5)^2 = (30)^2 + 2 \times 30 \times 5 + (5)^2$$

 $\begin{bmatrix} \because (a+b)^2 = a^2 + 2ab + b^2 \end{bmatrix}$

$$=900+300+25=1225$$

(iii)
$$(86)^2 = (80+6)^2 = (80)^2 + 2 \times 80 \times 6 + (6)^2$$

[:: $(a+b)^2 = a^2 + 2ab + b^2$]

= 1600 + 960 + 36 = 7386

(iv)
$$(93)^2 = (90+3)^2 = (90)^2 + 2 \times 90 \times 3 + (3)^2$$

[:: $(a+b)^2 = a^2 + 2ab + b^2$]
= 8100 + 540 + 9 = 8649

(v)
$$(71)^2 = (70+1)^2 = (70)^2 + 2 \times 70 \times 1 + (1)^2$$

[:: $(a+b)^2 = a^2 + 2ab + b^2$]

=4900 + 140 + 1 = 5041

(vi)
$$(46)^2 = (40+6)^2 = (40)^2 + 2 \times 40 \times 6 + (6)^2$$

[:: $(a+b)^2 = a^2 + 2ab + b^2$]

= 1600 + 480 + 36 = 2116

2. Write a Pythagoras triplet whose one member is: (i) 6 (ii) 14 (iii) 16 (iv) 18 Ans. (i) There are three numbers $2m_{e}m^{2}-1$ and $m^{2}+1$ in a Pythagorean Triplet. Here, $2m=6 \implies m=\frac{6}{2}=3$ Therefore, Second number $(m^{2}-1)=(3)^{2}-1=9-1=8$

Third number $m^2 + 1 = (3)^2 + 1 = 9 + 1 = 10$

Hence, Pythagorean triplet is (6, 8, 10).

(ii) There are three numbers $2m_mm^2 - 1$ and $m^2 + 1$ in a Pythagorean Triplet.

Here, $2m = 14 \implies m = \frac{14}{2} = 7$

Therefore, Second number $(m^2 - 1) = (7)^2 - 1 = 49 - 1 = 48$

Third number $m^2 + 1 = (7)^2 + 1 = 49 + 1 = 50$

Hence, Pythagorean triplet is (14, 48, 50).

(iii) There are three numbers $2^{2m_sm^2-1}$ and m^2+1 in a Pythagorean Triplet. Here, $2m=16 \implies m=\frac{16}{2}=8$

Therefore, Second number $(m^2 - 1) = (8)^2 - 1 = 64 - 1 = 63$

Third number $m^2 + 1 = (8)^2 + 1 = 64 + 1 = 65$

Hence, Pythagorean triplet is (16, 63, 65).

(iv) There are three numbers $2m, m^2 - 1$ and $m^2 + 1$ in a Pythagorean Triplet. Here, $2m = 18 \implies m = \frac{18}{2} = 9$ Therefore, Second number $(m^2 - 1) = (9)^2 - 1 = 81 - 1 = 80$ Third number $m^2 + 1 = (9)^2 + 1 = 81 + 1 = 82$ Hence, Pythagorean triplet is (18, 80, 82).

22

1. What could be the possible 'one's' digits of the square root of each of the following numbers: (i) 9801 (ii) **99856** (iii) **998001** (iv) 657666025 **Ans.** Since, Unit's digits of square of numbers are 0, 1, 4, 5, 6 and 9. Therefore, the possible unit's digits of the given numbers are: (i) 1 (ii) 6 (iii) 1 (iv) 5

(Ex. 6.3)

2. Without doing any calculation, find the numbers which are surely not perfect squares:

(i) 153

(ii) **257**

(iii) **408**

(iv) 441

Ans. Since, all perfect square numbers contain their unit's place digits 0, 1, 4, 5, 6 and 9. (i) But given number 153 has its unit digit 3. So it is not a perfect square number.

(ii) Given number 257 has its unit digit 7. So it is not a perfect square number.

(iii) Given number 408 has its unit digit 8. So it is not a perfect square number.

(iv) Given number 441 has its unit digit 1. So it would be a perfect square number

3. Find the square roots of 100 and 169 by the method of repeated subtraction. **Ans.** By successive subtracting odd natural numbers from 100, 100 - 1 = 99

99 - 3 = 96

96 - 5 = 91

91 - 7 = 8484 - 9 = 7575 - 11 = 6464 - 13 = 5151 - 15 = 3636 - 17 = 1919 - 19 = 0This successive subtraction is completed in 10 steps. Therefore $\sqrt{100} = 10$ By successive subtracting odd natural numbers from 169, 169 - 1 = 168168 - 3 = 165165 - 5 = 160160 - 7 = 153153 - 9 = 144144 - 11 = 133133 - 13 = 120120 - 15 = 105105 - 17 = 8888 - 19 = 6969 - 21 = 4848 - 23 = 2525 - 25 = 0

This successive subtraction is completed in 13 steps.

4. Find the square roots of the following numbers by the Prime Factorization method: (i) 729 (ii) 400 (iii) 1764 (iv) 4096 (v) 7744 (vi) 9604 (vii) 5929 (viii) 9216 (ix) 529 (x) 8100 Ans. (i) 729 $\sqrt{729} = \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= 3 \times 3 \times 3$ = 273 729 3 243 3 81 3 27 3 9 3 3 1 (ii) 400 $\sqrt{400} = \sqrt{2 \times 2 \times 2 \times 5 \times 5}$ $= 2 \times 2 \times 5$ = 20

~~~~~~~~~~~	~~~~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(iii) 1764 $\sqrt{1764} = \sqrt{2 \times 2 \times 3 \times 3 \times 7 \times 7}$	
$= 2 \times 3 \times 7$ $= 42$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(iv) 4096 $\sqrt{4096} = 2 \times 2 \times$	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\boxed{1}$ (v) 7744 $\sqrt{7744} = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 11 \times 11}$	
$= 2 \times 2 \times 2 \times 11$ $= 88$	

	~~~~~
2 7744 2 3872	
2 1936	
2 968	
2 242	
11 121	
11 11	
1	
(vi) 9604	
$\sqrt{9604} = \sqrt{2 \times 2 \times 7 \times 7 \times 7 \times 7}$	
$= 2 \times 7 \times 7$	
= 98	
2 9604	
2 4802	
7 2401	
7 343 7 49	
7 7	
1	
(vii) 5929	
$\sqrt{5929} = \sqrt{7 \times 7 \times 11 \times 11}$	
-7×11	
= 77	
7 5929	
/ 84/	
11 11	
1	
(····) 021 (
(VIII) 9210	
$\sqrt{9216} = 2 \times 2 \times$	
$= 2 \times 2 \times 2 \times 2 \times 2 \times 3$	
= 96	
27	

Carlos Victoria a		
2 4608		
2 2304		
2 576		
2 288		
$\frac{2}{2}$ 144		
2 36		
2 18		
3 9		
1		
(ix) 529		
$\sqrt{529} = \sqrt{23 \times 23}$		
= 23		
20		
23 529		
23 23		
(x) 8100		
$\sqrt{8100} = \sqrt{2 \times 2 \times 3 \times 3}$	3×3×3×5×5	
$= 2 \times 3 \times 3 \times 5$		
= 90		
20		
2 8100		
2 4050		
3 2025		
3 225		
3 75		
5 5		
1		

(v) 1458 (vi) 768

Ans. (i) $252 = 2 \times 2 \times 3 \times 3 \times 7$

Here, prime factor 7 has no pair. Therefore 252 must be multiplied by 7 to make it a perfect square.

 $\therefore 252 \times 7 = 1764$

And (i)
$$\sqrt{1764} = 2 \times 3 \times 7 = 42$$

2	252
2	126
3	63
3	21
7	7
	1

(ii) $180 = 2 \times 2 \times 3 \times 3 \times 5$

Here, prime factor 5 has no pair. Therefore 180 must be multiplied by 5 to make it a perfect square.

 $180 \ge 5 = 900$

And $\sqrt{900} = 2 \times 3 \times 5 = 30$

2	180	
2	90	
3	45	
3	15	
5	5	
	1	

(iii) $1008 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$

Here, prime factor 7 has no pair. Therefore 1008 must be multiplied by 7 to make it a perfect square.

 $1008 \times 7 = 7056$

And $\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$

2	1008
2	504
2	252
2	126
3	63
3	21
7	7
	1

(iv) $2028 = 2 \times 2 \times 3 \times 13 \times 13$

Here, prime factor 3 has no pair. Therefore 2028 must be multiplied by 3 to make it a perfect square.

 $\therefore 2028 \times 3 = 6084$

And $\sqrt{6084} = 2 \times 2 \times 3 \times 3 \times 13 \times 13 = 78$

2	2028
2	1014
3	507
13	169
13	13
-	1

(v) $1458 = 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

Here, prime factor 2 has no pair. Therefore 1458 must be multiplied by 2 to make it a perfect square.

 $\therefore 1458 \times 2 = 2916$

And $\sqrt{2916} = 2 \times 3 \times 3 \times 3 = 54$

2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

(vi) $768 = 2 \times 3$

Here, prime factor 3 has no pair. Therefore 768 must be multiplied by 3 to make it a perfect square.

 \therefore 768×3 = 2304

And $\sqrt{2304} = 2 \times 2 \times 2 \times 2 \times 3 = 48$

2 768 384 2 192 2 96 2 2 48 24 2 2 12 2 6 3 3 1 6. For each of the following numbers, find the smallest whole number by which it

6. For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square. Also, find the square root of the square number so obtained:

(i) 252 (ii) 2925 (iii) 396 (iv) 2645 (v) 2800 (vi) 1620 Ans. (i) $252 = 2 \times 2 \times 3 \times 3 \times 7$

Here, prime factor 7 has no pair. Therefore 252 must be divided by 7 to make it a perfect square.

252 = 7 = 36

And $\sqrt{36} = 2 \times 3 = 6$

(ii) $2925 = 3 \times 3 \times 5 \times 5 \times 13$

Here, prime factor 13 has no pair. Therefore 2925 must be divided by 13 to make it a perfect square.

2925 ÷ 13 = 225

And $\sqrt{225} = 3 \times 5 = 15$

				V								V	V	 ▼	V		,
4																	
◣																	,
Ì	3	292	25														•

3	2923
3	975
5	325
5	65
13	13
-	1

(iii) $396 = 2 \times 2 \times 3 \times 3 \times 11$

Here, prime factor 11 has no pair. Therefore 396 must be divided by 11 to make it a perfect square.

x[±] 396 *∓* 11 = 36

And $\sqrt{36} = 2 \times 3 = 6$

2	396
2	198
3	99
3	33
11	11
	1

(iv) $2645 = 5 \times 23 \times 23$

Here, prime factor 5 has no pair. Therefore 2645 must be divided by 5 to make it a perfect square.

- 2645 ÷ 5 = 529

And $\sqrt{529} = 23 \times 23 = 23$

5	2645
23	529
23	23
	1

(v) $2800 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 7$

Here, prime factor 7 has no pair. Therefore 2800 must be divided by 7 to make it a perfect square.

- 2800 ÷ 7 = 400

And $\sqrt{400} = 2 \times 2 \times 5 = 20$

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2	2800	
2	1400	
2	700	
2	350	
5	175	
5	35	
7	7	
100	1	

(vi)  $1620 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5$ 

Here, prime factor 5 has no pair. Therefore 1620 must be divided by 5 to make it a perfect square.

 $1620 \div 5 = 324$ 

And  $\sqrt{324} = 2 \times 3 \times 3 = 18$ 

2	1620
2	810
3	405
3	135
3	45
3	15
5	5
	1

7. The students of Class VIII of a school donated `2401 in all, for Prime Minister's National Relief Fund. Each student donated as many rupees as the number of students in the class. Find the number of students in the class. Ans. Here, Donated money = `2401

Let the number of students be x

Therefore donated money =  $x \times x$ 

According to question,

 $x^2 = 2401$ 

 $\Rightarrow x = \sqrt{2401} = \sqrt{7 \times 7 \times 7 \times 7}$ 

 $\Rightarrow x = 7 \times 7 = 49$ 

Hence, the number of students is 49.

7	2401		
7	343		
7	49		
7	7		
	1		

8. 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Ans. Here, Number of plants = 2025Let the number of rows of planted plants be x.

And each row contains number of plants = x

According to question,

 $x^2 = 2025$ 

$$\Rightarrow x = \sqrt{2025} = \sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5}$$

 $\Rightarrow x = 3 \times 3 \times 5 = 45$ 

Hence, each row contains 45 plants.

3	2025
3	675
3	225
3	75
5	25
5	5
	1

9. Find the smallest square number that is divisible by each of the numbers 4, 9 and 10.

Ans. L.C.M. of 4, 9 and 10 is 180. Prime factors of  $180 = 2 \times 2 \times 3 \times 3 \times 5$  Here, prime factor 5 has no pair. Therefore 180 must be multiplied by 5 to make it a perfect square.

 $180 \times 5 = 900$ 

Hence, the smallest square number which is divisible by 4, 9 and 10 is 900.

2	180
2	90
3	45
3	15
5	5
	1

10. Find the smallest square number that is divisible by each of the numbers 8, 15 and 20.

Ans. L.C.M. of 8, 15 and 20 is 120. Prime factors of  $120 = 2 \times 2 \times 2 \times 3 \times 5$ 

Here, prime factor 2, 3 and 5 has no pair. Therefore 120 must be multiplied by

 $2 \times 3 \times 5$  to make it a perfect square.

 $\therefore 120 \times 2 \times 3 \times 5 = 3600$ 

Hence, the smallest square number which is divisible by 8, 15 and 20 is 3600.

2	120
2	60
3	30
3	15
5	5
-	1



Find the square roots of each of the following numbers by Division method:

 (i) 2304
 (ii) 4489
 (iii) 3481
 (iv) 529
 (v) 3249
 (vi) 1369
 (vii) 5776
 (viii) 7921
 (ix) 576
 (x) 1024
 (xi) 3136
 (xii) 900
 Ans. (i) 2304
 Hence, the square root of 2304 is 48.







(iii) 3481 Hence, the square root of 3481 is 59.



(iv) 529 Hence, the square root of 529 is 23.


0

(**v**) 3249 Hence, the square root of 3249 is 57.



(vi) 1369 Hence, the square root of 1369 is 37.



(vii) 5776 Hence, the square root of 5776 is 76.

	76
7	57 76
	- 49
146	876
	- 876
	0

(viii) 7921 Hence, the square root of 7921 is 89.



(ix) 576

Hence, the square root of 576 is 24.



(**x**) 1024 Hence, the square root of 1024 is 32.



(xi) 3136 Hence, the square root of 3136 is 56.

	56
5	31 36
	- 25
106	636
	- 636
	0

(xii) 900 Hence, the square root of 900 is 30.



(iv) Here, 27225 contains fivr digits which is odd. Therefore, number of digits in square root =  $\frac{n}{2} = \frac{5+1}{2} = 3$ 

(v) Here, 390625 contains six digits which is even. Therefore, number of digits in square root =  $\frac{n}{2} = \frac{6}{2} = \frac{1}{2}$ 

39

3. Find the square root of the following decimal numbers: (i) 2.56 (ii) 7.29 (iii) 51.84 (iv) 42.25 (v) 31.36 Ans. (i) 2.56 Hence, the square root of 2.56 is 1.6.







(iii) 51.84 Hence, the square root of 51.84 is 7.2.



(iv) 42.25 Hence, the square root of 42.25 is 6.5.



(v) 31.36

Hence, the square root of 31.36 is 5.6.



4. Find the least number which must be subtracted from each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained:(i) 402

(ii) 1989
(iii) 3250
(iv) 825
(v) 4000
Ans. (i) 402
We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 2. Therefore 2 must be subtracted from 402 to get a perfect square.



402 - 2 = 400

Hence, the square root of 400 is 20.



## (ii) 1989

We know that, if we subtract the remainder from the number, we get a perfect square.



Here, we get remainder 53. Therefore 53must be subtracted from 1989 to get a perfect square.

1989 - 53 = 1936

Hence, the square root of 1936 is 44.







Here, we get remainder 1. Therefore 1 must be subtracted from 3250 to get a perfect square.

-3250 - 1 = 3249

Hence, the square root of 3249 is 57.



# (iv) 825

We know that, if we subtract the remainder from the number, we get a perfect square.



Here, we get remainder 41. Therefore 41 must be subtracted from 825 to get a perfect square.

825 - 41 = 784

Hence, the square root of 784 is 28.





We know that, if we subtract the remainder from the number, we get a perfect square.



Here, we get remainder 31. Therefore 31 must be subtracted from 4000 to get a perfect square.

-4000 - 31 = 3969

Hence, the square root of 3969 is 63.



5. Find the least number which must be added to each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained:
(i) 525
(ii) 1750
(iii) 252
(iv) 1825
(v) 6412
Ans. (i) 525

Since remainder is 41.

Therefore  $22^2 < 525$ 

Next perfect square number  $23^2 = 529$ 

Hence, number to be added

$$= 529 - 525 = 4$$

525 + 4 = 529

Hence, the square root of 529 is 23.



(ii) 1750 Since remainder is 69.

Therefore  $41^2 < 1750$ 

Next perfect square number  $42^2 = 1764$ 

Hence, number to be added

= 1764 - 1750 = 14

1750 + 14 = 1764

Hence, the square root of 1764 is 42.





Therefore  $15^2 < 252$ 

Next perfect square number  $16^2 = 256$ 

Hence, number to be added

$$= 256 - 252 = 4$$

$$252 + 4 = 256$$

Hence, the square root of 256 is 16.



(iv) 1825 Since remainder is 61.

Therefore  $42^2 < 1825$ 

Next perfect square number  $43^2 = 1849$ 

Hence, number to be added = 1849 - 1825 = 24

-1825 + 24 = 1849

Hence, the square root of 1849 is 43.

 $4 \qquad \frac{42}{\overline{18}\,\overline{25}} \\ -16 \\ 82 \qquad 225 \\ -164 \\ 61 \\ \end{array}$ 

(v) 6412 Since remainder is 12.

Therefore  $80^2 < 6412$ 

Next perfect square number  $81^2 = 6561$ 

Hence, number to be added

- = 6561 6412 = 149
- 6412 + 149 = 6561

Hence, the square root of 6561 is 81.



6. Find the length of the side of a square whose area is  $441 m^2$ ? Ans. Let the length of side of a square be x meter.

Area of square =  $(side)^2 = x^2$ 

According to question,



7. In a right triangle ABC,  $\angle B = 90^{\circ}$ .



(i) If AB = 6 cm, BC = 8 cm, find AC. (ii) If AC = 13 cm, BC = 5 cm, find AB. Ans. (a) Using Pythagoras theorem,  $AC^2 = AB^2 + BC^2$ 

 $\implies AC^2 = (6)^2 + (8)^2$ 

 $\Rightarrow AC^2 = 36 + 84 = 100$ 

 $\Rightarrow$ AC = 10 cm

(b) Using Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\implies (13)^2 = AB^2 + (5)^2$$

 $\Rightarrow$  169 =  $AB^2$  + 25

 $\Rightarrow AB^2 = 169 - 25$ 

$$\Rightarrow AB^2 = 144$$

 $\Rightarrow$  AB= 12 cm



8. A gardener has 1000 plants. He wants to plant these in such a way that the number of rows and number of columns remain same. Find the minimum number of plants he needs more for this.

**Ans.** Here, plants = 1000Since remainder is 39.

Therefore  $31^2 < 1000$ 

Next perfect square number  $32^2 = 1024$ 

Hence, number to be added

= 1024 - 1000 = 24

1000 + 24 = 1024

Hence, the gardener required 24 more plants.

31 3 10 00 - 9 100

61

- 61 39

9. There are 500 children in a school. For a P.T. drill they have to stand in such a manner that the number of rows is equal to number of columns. How many children would be left out in this arrangement?

**Ans.** Here, Number of children = 500

By getting the square root of this number, we get,

In each row, the number of children is 22.

And left out children are 16.





**CHAPTER – 7** 

- SUMMARY
- INTRODUCTION
- CUBES OF NUMBERS
- CUBEROOTS OF NUMBER
- INTRODUCTION:

### **CUBE TABLE**

NUMBER	EXPANDED FORM	CUBE
1	1x1x1	1
2	2x2x2	8
3	3x3x3	27
4	4x4x4	64
5	5x5x5	125
6	6x6x6	216
7	7x7x7	343

(Exercise- 7.1) 1. Which of the following numbers are not perfect cubes: (i)216 (ii)128 (iii)1000 (iv)100 (v)46656 Ans. (i)216 Prime factors of 216 = 2×2×2×3×3×3

Here all factors are in groups of 3's (in triplets)

					V					V			V				V			V		$\mathbf{h}$
1																						

2	216
2	108
2	54
3	27
3	9
3	3
	1

Therefore, 216 is a perfect cube number.

(ii) 128 Prime factors of 128

 $= 2 \times 2$ 

Here one factor 2 does not appear in a 3's group.

2	128	
2	64	
2	32	
2	16	
2	8	
2	4	
2	2	
	1	

Therefore, 128 is not a perfect cube.

(iii) 1000 Prime factors of  $1000 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ 

Here all factors appear in 3's group.

Therefore, 1000 is a perfect cube.

2	1000
2	500
2	250
5	125
5	25
5	5
	1

(iv) 100 Prime factors of 100 = 2 x 2 x 5 x 5 Here all factors do not appear in 3's group.

Therefore, 100 is not a perfect cube.

2	100
2	50
5	25
5	5
	1

(v) 46656 Prime factors of 46656

Here all factors appear in 3's group.

Therefore, 46656 is a perfect cube.

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube: (i)243 (ii)256 (iii)72 (iv)675 (v)100 Ans. (i)243 Prime factors of  $243 = 3 \times 3 \times 3 \times 3 \times 3$ 

Here 3 does not appear in 3's group.

Therefore, 243 must be multiplied by 3 to make it a perfect cube.

3	243
3	81
3	27
3	9
3	3
	1

(ii) 256 Prime factors of 256

 $= 2 \times 2$ 

Here one factor 2 is required to make a 3's group.

Therefore, 256 must be multiplied by 2 to make it a perfect cube.

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 72 Prime factors of  $72 = 2 \times 2 \times 2 \times 3 \times 3$ 

Here 3 does not appear in 3's group.

Therefore, 72 must be multiplied by 3 to make it a perfect cube.

54

	1	• • •	¥ ¥	 × × ×	<b>. . .</b>	• • •	
2	12						
2	36						
2	18						K
3	9						
3	3						
11	1						
-							

(iv) 675 Prime factors of  $675 = 3 \times 3 \times 3 \times 5 \times 5$ 

Here factor 5 does not appear in 3's group.

Therefore 675 must be multiplied by 3 to make it a perfect cube.

3	675
3	225
3	75
5	25
5	5
6 () 9	1

(v) 100 Prime factors of  $100 = 2 \times 2 \times 5 \times 5$ 

Here factor 2 and 5 both do not appear in 3's group.

Therefore 100 must be multiplied by  $2 \times 5 = 10$  to make it a perfect cube.

2	100	
2	50	
5	25	
5	5	
	1	

3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:(i)81

(ii)128 (iii)135 (iv)192 (v)704 Ans. (i)81 Prime factors of 81 = 3×3×3×3

Here one factor 3 is not grouped in triplets.

Therefore 81 must be divided by 3 to make it a perfect cube.

(ii) 128 Prime factors of  $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ 

Here one factor 2 does not appear in a 3's group.

Therefore, 128 must be divided by 2 to make it a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
() ()	1

(iii) 135 Prime factors of  $135 = 3 \times 3 \times 3 \times 5$ 

Here one factor 5 does not appear in a triplet.

Therefore, 135 must be divided by 5 to make it a perfect cube.

3	13	5
3	45	288 1920
3	15	
5	5	
	1	
1.1	199	100

(iv) 192 Prime factors of  $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$ 

Here one factor 3 does not appear in a triplet.

Therefore, 192 must be divided by 3 to make it a perfect cube.

2	192	
2	96	
2	48	
2	24	
2	12	
2	6	
3	3	
2 1	1	

(v) 704 Prime factors of 704

 $= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$ 

Here one factor 11 does not appear in a triplet.

Therefore, 704 must be divided by 11 to make it a perfect cube.

2	704
2	352
2	176
2	88
2	44
2	22
2	11
24	1

4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube? Ans. Given numbers =  $5 \times 2 \times 5$ 

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by  $2 \times 5 \times 2 = 20$  to make it a perfect cube.

Hence he needs 20 cuboids.

(Ex. 7.2)

**1.** Find the cube root of each of the following numbers by prime factorization method:

(i) 64 (ii) 512 (iii) 10648 (iv) 27000 (v) 15625 (vi) 13824 (vii) 110592 (viii) 46656 (ix) 175616 (x) 91125 **Ans. (i)** 64  $\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$  $\sqrt[3]{64} = 2 \times 2$ = 42 64 2 32 2 16 8 2 2 4 2 2 1

(ii) 512  $\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$  $= 2 \times 2 \times 2 = 8$ 

2	254						
2	256						
2	128						
2	64						
	32						
2	16						
2	8						
2	4						
	2						
T	1						
<b>ii)</b> 10	648						
0648	- 3/2 ~ 2	~ 2~11~11~1	1				
) <del>4</del> 0	$= \sqrt{2 \times 2}$	~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1				
11							
L							
,							
2	10648						

 $= 2 \times 3 \times 5$ 

= 30

(iv) 27000  $\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 5}$ 

2	27000
2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

(v) 15625  $\sqrt[3]{15625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$ 

····	
= 5×5	
= 25	K

5	15625
5	3125
5	625
5	125
5	25
5	5
S 1005	1

(vi) 13824

 $= 2 \times 2 \times 2 \times 3$ 

= 24

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1
18 - 19 A	

 $= 2 \times 2 \times 2 \times 2 \times 3$ 

= 48

-				• • • • • • • • • • • • • • • • • • •	• • •	· · · · · · · · · · · · · · · · · · ·	
2	110592						
2	55296						
2	27648						
2	13824						
2	6912						
2	3456						
2	1728						
2	864						
2	432						
2	216						
2	108						
2	54						
3	27						
3	9						
3	3						
	1						
riii)	46656 56 = ∛2×2×2	2×2×2×3×3	3×3×3×3×	$\overline{3} = 2 \times 2 >$	3×3		
466 36							
466 36 2	46656						
466 36 2 2	46656 23328						
466 36 2 2 2	46656 23328 11664						
466 36 2 2 2 2 2	46656 23328 11664 5832						
466 36 2 2 2 2 2 2 2	46656 23328 11664 5832 2916						
466 36 2 2 2 2 2 2 2 2 2 2	46656 23328 11664 5832 2916 1458						

= 56

 (ix) 175616  $\sqrt[3]{175616} = \sqrt[3]{2 \times 2 \times 7 \times 7} = 2 \times 2 \times 2 \times 7 \times 7}$ 

$ \frac{2}{2} \frac{87808}{2} \frac{43904}{2} \frac{2}{21952} \frac{2}{2} \frac{10976}{2} \frac{2}{5488} \frac{3}{2} \frac{2744}{2} \frac{2}{2} \frac{1372}{2} \frac{2}{686} \frac{6}{7} \frac{343}{7} \frac{7}{7} \frac{49}{7} \frac{7}{7} \frac{1}{1} \frac{1}{1} $ (x) 91125 = $\sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} = 3 \times 3 \times 5 = 45$ $ \frac{3}{3} \frac{91125}{3} \frac{30375}{3} \frac{10125}{3} \frac{3375}{5} \frac{1125}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{1}{5} $	0.000	1/5616		
$ \frac{2}{2} \frac{43904}{2} $ $ \frac{2}{2} \frac{21952}{2} $ $ \frac{2}{2} \frac{10976}{2} $ $ \frac{2}{2} \frac{5488}{2} $ $ \frac{2}{2} \frac{2744}{2} $ $ \frac{2}{2} \frac{1372}{2} $ $ \frac{2}{2} \frac{686}{7} $ $ \frac{7}{343} $ $ \frac{7}{7} \frac{49}{7} $ $ \frac{7}{7} \frac{7}{1} $ $ \frac{1}{1} $ $ (x) 91125 = \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} $ $ = 3 \times 3 \times 5 = 45 $ $ \frac{3}{3} \frac{91125}{3} $ $ \frac{3}{30375} $ $ \frac{3}{3} \frac{1125}{3} $ $ \frac{3}{3375} $ $ \frac{3}{5} \frac{125}{5} $ $ \frac{5}{5} \frac{5}{5} $ $ \frac{1}{1} $	2	87808		
$ \frac{2}{2} \frac{21952}{10976} \\ \frac{2}{2} \frac{5488}{2} \\ \frac{2}{2} \frac{2744}{2} \\ \frac{2}{1372} \\ \frac{2}{2} \frac{686}{7} \\ \frac{7}{343} \\ \frac{7}{49} \\ \frac{7}{7} \\ \frac{1}{1} \\ (x) 91125 \\ \frac{3}{91125} \\ \frac{3}{91125} \\ \frac{3}{30375} \\ \frac{3}{3} \frac{91125} \\ \frac{3}{3} \frac{3915} \\ \frac{3}{3} \frac{375} \\ \frac{5}{5} \\ \frac{125} \\ \frac{5}{5} \\ \frac{5}{5} \\ \frac{1}{1} \\ $	2	43904		
$ \frac{2}{2} \frac{10976}{2} \frac{5488}{2} \frac{2}{2744} \frac{2}{2} \frac{1372}{2} \frac{2}{686} \frac{686}{7} \frac{343}{7} \frac{49}{7} \frac{7}{7} \frac{1}{1} \frac{1}{1} $ (x) 91125 = $\sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$ = $3 \times 3 \times 5 = 45$ $ \frac{3}{3} \frac{91125}{3} \frac{30375}{3} \frac{3}{10125} \frac{3}{3} \frac{375}{5} \frac{5}{5} \frac{125}{5} \frac{5}{5} \frac{5}{$	2	21952		
$ \frac{2}{2} \frac{5488}{2} \frac{2}{2744} \frac{2}{2} \frac{1372}{2} \frac{2}{686} \frac{686}{7} \frac{343}{7} \frac{7}{7} \frac{49}{7} \frac{1}{7} \frac{1}{1} 1$	2	10976		
$ \frac{2}{2} \frac{2744}{2} \frac{1372}{2} \frac{686}{7} \frac{343}{7} \frac{7}{49} \frac{7}{7} \frac{7}{7} \frac{1}{1} \frac{1}{1} $ (x) 91125 $\sqrt[3]{91125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} \frac{3 \times 3 \times 5 \times 5 \times 5}{3} \frac{3 \times 3 \times 5 \times 5 \times 5}{3} \frac{3 \times 5 \times 5 \times 5}{3} \frac{3 \times 5 \times 5 \times 5}{3} \frac{3 \times 5 \times 5 \times 5}{5} \frac{5}{5} $	2	5488		
$ \frac{2}{2} \frac{1372}{372} $ $ \frac{2}{2} \frac{686}{7} $ $ 7 \frac{343}{7} $ $ 7 \frac{49}{7} $ $ 7 \frac{7}{1} $ $ \frac{1}{1} $ (x) 91125 $ \frac{3}{\sqrt{91125}} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} $ $ = 3 \times 3 \times 5 = 45 $ $ \frac{3}{3} \frac{91125}{3} $ $ \frac{3}{3} \frac{91125}{3} $ $ \frac{3}{3} \frac{91125}{3} $ $ \frac{3}{3} \frac{10125}{3} $ $ \frac{3}{3} \frac{375}{5} $ $ \frac{5}{5} \frac{125}{5} $ $ \frac{5}{5} \frac{5}{5} $ $ \frac{1}{1} $	2	2744		
$ \frac{2}{7} \frac{686}{7} \frac{343}{7} \frac{49}{7} \frac{7}{7} \frac{1}{1} \frac{1}{1} $ (x) 91125 $\frac{3}{9}$ 91125 = $\frac{3}{3}$ 3×3×3×3×3×3×5×5×5 = 3×3×5=45 $ \frac{3}{3} \frac{91125}{3} \frac{30375}{3} \frac{1125}{3} \frac{3375}{5} \frac{125}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{1}{5} \frac{1}{5$	2	1372		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	686		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	343		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	49		
$\begin{array}{c c} 1 \\ \hline x \ 91125 \\ \hline \sqrt{91125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} \\ = 3 \times 3 \times 5 = 45 \\ \hline \frac{3 \ 91125}{3 \ 30375} \\ \hline \frac{3 \ 10125}{3 \ 3075} \\ \hline \frac{3 \ 1125}{5 \ 125} \\ \hline \frac{5 \ 125}{5 \ 5} \\ \hline \frac{5 \ 125}{5 \ 12} \\ \hline \end{array}$	7	7		
$\begin{array}{c} x) \ 91125 \\ \hline \sqrt{91125} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5} \\ = \ 3 \times 3 \times 5 = 45 \\ \hline \frac{3}{3} \ 91125 \\ \hline \frac{3}{3} \ 10125 \\ \hline \frac{3}{3} \ 10125 \\ \hline \frac{3}{3} \ 1125 \\ \hline \frac{3}{5} \ 125 \\ \hline \frac{5}{5} \ 5 \\ \hline \frac{5}{5} \ 5 \\ \hline 1 \\ \hline \end{array}$		1		
$     \begin{array}{r}       5 & 125 \\       5 & 25 \\       5 & 5 \\       1   \end{array} $	3	30375		
$   \frac{5 \ 25}{5 \ 5} $ 1	3 3 3 3 3 3	30375 10125 3375 1125 375		
	3 3 3 3 3 5 5	30375 10125 3375 1125 375 125 25		
	3 3 3 3 3 5 5 5	30375 10125 3375 1125 375 125 25		
	3 3 3 3 3 5 5 5 5	30375 10125 3375 1125 375 125 25 5 1		
	3 3 3 3 5 5 5	30375 10125 3375 1125 375 125 25 5 1		

(iv) There is no perfect cube which ends with 8.

(v) The cube of a two digit number may be a three digit number.

(vi) The cube of a two digit number may have seven or more digits.

(vii) The cube of a single digit number may be a single digit number. Ans. (i) False



```
3. You are told that 1,331 is a perfect cube. Can you guess with factorization what is
its cube root? Similarly guess the cube roots of 4913, 12167, 32768.
Ans. We know that 10^3 = 1000 and Possible cube of 11^3 = 1331
Since, cube of unit's digit 1^3 = 1
Therefore, cube root of 1331 is 11.
4913
We know that 7^3 = 343
Next number comes with 7 as unit place 17^3 = 4913
Hence, cube root of 4913 is 17.
12167
We know that 3^3 = 27
Here in cube, ones digit is 7
Now next number with 3 as ones digit
13^3 = 2197
And next number with 3 as ones digit
23^3 = 12167
Hence cube root of 12167 is 23.
32768
We know that 2^3 = 8
Here in cube, ones digit is 8
Now next number with 2 as ones digit
12^3 = 1728
And next number with 2 as ones digit
22^3 = 10648
And next number with 2 as ones digit
                                           64
```

 $32^3 = 32768$ 

Hence cube root of 32768 is 32.



- SUMMARY
- INTRODUCTION
- PROFIT AND LOSS
- SIMPLE INTEREST AND INTEREST
- RATIO AND PERCENTAGES

#### **INTRODUCTION:**

Ratio is the form of fractions . that is a comparison between two figures.

## **DISCOUNT :**

Discount is a reduction given on marked price/

Discount = Marked price – Sale price

Profit = selling price - cost price

Loss = Cost price – selling price

Simple t=interest = PXRXT / 100

Compound interest =:

 $\mathbf{A} = \mathbf{P} + \mathbf{1}$ 

(Exercise- 8.1)

1. Find the ratio of the following:

(a) Speed of a cycle 15 km per hour to the speed of scooter 30 km per hour.
(b) 50 m to 10 km
(c) 50 paise to Rs.5
Ans. (a) Speed of cycle = 15 km/hr
Speed of scooter = 30 km/hr

Hence ratio of speed of cycle to that of scooter =  $15:30 = \frac{15}{30} = \frac{1}{2} = 1:2$ 

**(b)**  $\therefore$  1 km = 1000 m  $\therefore$  10 km = 10×1000 = 10000 m

5 m  $\therefore$  Ratio = 10000 m = 2000 = 1 : 2000 (c) 1 = 100 paise  $...5 = 5 \times 100 = 500$  paise 50 paise 1 Hence Ratio = 500 paise =  $\overline{10}$  = 1 : 10 2. Convert the following ratios to percentages: (a) 3 : 4 (b) 2 : 3 ⁵-×100 % Ans. (a) Percentage of 3:4=4= 75% (b) Percentage of 2 :  $3 = \frac{2}{3} \times 100 \%$ 66²% 3

3. 72% of 25 students are good in mathematics. How many are not good in mathematics?

Ans. Total number of students = 25

Number of good students in mathematics = 72% of  $25 = \frac{12}{100} \times 25 = 18$ 

Number of students not good in mathematics = 25 - 18 = 7

Hence percentage of students not good in mathematics =  $\frac{7}{25} \times 100 = 28\%$ 

4. A football team won 10 matches out of the total number of matches they played. If their win percentage was 40, then how many matches did they play in all?

Ans. Let total number of matches be x. According to question,

40% of total matches = 10

 $\Rightarrow 40\% \text{ of } x = 10$ 

 $\Rightarrow \frac{40}{100} \times x = 10$ 

$$\Rightarrow x = \frac{10 \times 100}{40} = 25$$

Hence total number of matches are 25.

5. If Chameli had Rs. 600 left after spending 75% of her money, how much did she have in the beginning?

Ans. Let her money in the beginning be `x. According to question,

x - 75% of x = 600

$$\Rightarrow \frac{x - \frac{75}{100} \times x = 600}{x - \frac{3}{4}x = 600}$$
$$\Rightarrow \frac{x - \frac{3}{4}x = 600}{x \left(1 - \frac{3}{4}\right) = 600}$$
$$\Rightarrow \frac{x \left(\frac{4 - 3}{4}\right) = 600}{x \left(\frac{4 - 3}{4}\right) = 600}$$

 $\Rightarrow x \left(\frac{1}{4} = 600\right)$ 

 $\Rightarrow x = 600 \times 4 = 2400$ 

Hence the money in the beginning was `2,400.

6. If 60% people in a city like cricket, 30% like football and the remaining like other games, then what percent of the people like other games? If the total number of people are 50 lakh, find the exact number who like each type of game.

Ans. Number of people who like cricket = 60%

Number of people who like football

= 30%

Number of people who like other games

= 100% - (60% + 30%) = 10%

Now Number of people who like cricket

= 60% of 50,00,000

 $= \frac{60}{100} \times 50,00,000 = 30,00,000$ 

And Number of people who like football

$$= \frac{30}{100} \times 50,00,000 = 15,00,000$$

Number of people who like other games = 10% of 50,00,000

$$=\frac{10}{100}\times50,00,000$$
 = 5,00,000

Hence, number of people who like other games are 5 lakh.

## (Ex. 8.2)

100

1. A man got 10% increase in his salary. If his new salary is Rs.1,54,000, find his original salary.

**Ans.** Let original salary be Rs.100. Therefore New salary i.e., 10% increase

= 100 + 10 = Rs.110

 $\therefore$  New salary is Rs.110, when original salary = Rs.100

New salary is Rs.1, when original salary =  $\overline{110}$ 

. New salary is Rs.1,54,000, when original salary =  $\frac{100}{110} \times 154000$  = Rs.1,40,000

Hence original salary is Rs. 1,40,000.

2. On Sunday 845 people went to the Zoo. On Monday only 169 people went. What is the percent decrease in the people visiting the Zoo on Monday?

Ans. On Sunday, people went to the Zoo = 845

On Monday, people went to the Zoo = 169

Number of decrease in the people

= 845 - 169 = 676

676 _____×100 Decrease percent =  $\overline{845}$ = 80%Hence decrease in the people visiting the Zoo is 80%. 3. A shopkeeper buys 80 articles for Rs.2,400 and sells them for a profit of 16%. Find the selling price of one article. Ans. No. of articles = 80Cost Price of articles = Rs. 2,400And Profit = 16% $\therefore$  Cost price of articles is Rs.100, then selling price = 100 + 16 = Rs.116116  $\therefore$  Cost price of articles is Rs.1, then selling price = 100 116 ×2400  $\therefore$  Cost price of articles is Rs.2400, then selling price = 100 = Rs.2784Hence, Selling Price of 80 articles = Rs.2784 Therefore Selling Price of 1 article 2784= 80 = Rs.34.80

4. The cost of an article was Rs.15,500, Rs.450 were spent on its repairs. If it sold for a profit of 15%, find the selling price of the article.

Ans. Here, C.P. = Rs.15,500 and Repair cost = Rs.450Therefore Total Cost Price = 15500 + 450 = Rs.15,950

Let C.P be Rs.100, then S.P. = 100 + 15

= Rs.115

When C.P. is Rs.100, then S.P. = Rs.115

When C.P. is Rs.1, then S.P. =  $\frac{115}{100}$ 

- When C.P. is Rs.15950, then S.P.

 $=\frac{115}{100} \times 15950$  = Rs.18,342.50

5. A VCR and TV were bought for Rs.8,000 each. The shopkeeper made a loss of 4% on the VCR and a profit of 8% on the TV. Find the gain or loss percent on the whole transaction.

Ans. Cost price of VCR = Rs.8000 and Cost price of TV = Rs.8000Total Cost Price of both articles

= Rs.8000 + Rs.8000 = Rs. 16,000

Now VCR is sold at 4% loss.

Let C.P. of each article be Rs.100, then S.P. of VCR = 100 - 4 = Rs.96

 $\therefore$  When C.P. is Rs.100, then S.P. = Rs.96

96

When C.P. is Rs.1, then S.P. = 100

- When C.P. is Rs.8000, then S.P.

$$=\frac{96}{100}\times8000$$
 = Rs.7,680

And TV is sold at 8% profit, then S.P. of TV = 100 + 8 = Rs.108

When C.P. is Rs.100, then S.P. = Rs.108

108

 $\therefore$  When C.P. is Rs.1, then S.P. = 100
When C.P. is Rs.8000, then S.P.  $\frac{108}{100} \times 8000 = \text{Rs.8,640}$ Then, Total S.P. = Rs.7,680 + Rs.8,640 = Rs. 16,320Since S.P. >C.P., Therefore Profit = S.P. - C.P. = 16320 - 16000 = Rs.320And Profit% =  $\frac{\text{Profit}}{\text{Cost Price}} \times 100$ 

 $=\frac{320}{16000}\times100$  = 2%

(Ex. 8.3)

1. Calculate the amount and compound interest on:

(a) Rs.10,800 for 3 years at  $12\frac{1}{2}\%$  per annum compounded annually. (b) Rs.18,000 for  $2\frac{1}{2}$  years at 10% per annum compounded annually.  $1\frac{1}{2}$ 

(c) Rs.62,500 for ² years at 8% per annum compounded annually.
(d) Rs.8,000 for ¹ years at 9% per annum compounded half yearly. (You could the year by year calculation using S.I. formula to verify).

(e) Rs.10,000 for ¹ years at 8% per annum compounded half yearly.

Ans. (a) Here, Principal (P) = Rs. 10800, Time  $\binom{n}{2}$  = 3 years, Rate of interest (R) =  $\frac{12\frac{1}{2}\%}{2} = \frac{25}{2}\%$  Amount (A) =  $P\left(1+\frac{R}{100}\right)^n$  $= \frac{10800 \left(1 + \frac{25}{2 \times 100}\right)^3}{2 \times 100} = \frac{10800 \left(1 + \frac{1}{2 \times 4}\right)^3}{2 \times 100}$  $= 10800 \left(1 + \frac{1}{8}\right)^3 = 10800 \left(\frac{9}{8}\right)^3$  $= \frac{10800 \times \frac{9}{8} \times \frac{9}{8} \times \frac{9}{8}}{8} \times \frac{9}{8}$ = Rs. 15,377.34 Compound Interest (C.I.) = A - P= Rs. 10800 - Rs. 15377.34 = Rs. 4,577.34 (b) Here, Principal (P) = Rs. 18,000, Time  $\binom{n}{2} = \frac{2\frac{1}{2}}{2}$  years, Rate of interest (R) = 10% p.a. Amount (A) =  $P\left(1+\frac{R}{100}\right)^n$  $= 18000 \left(1 + \frac{10}{100}\right)^2 = 18000 \left(1 + \frac{1}{10}\right)^2$  $= \frac{18000 \left(\frac{11}{10}\right)^2}{=} \frac{18000 \times \frac{11}{10} \times \frac{11}{10}}{=} \frac{11}{10} \times \frac{11}{10}$ = Rs. 21,78021780×10×1 Interest for  $\overline{2}$  years on Rs. 21,780 at rate of 10% = 100= Rs. 1,089Total amount for  $2\frac{1}{2}$  years = Rs. 21,780 + Rs. 1089 = Rs. 22,869 Compound Interest (C.I.) = A - P74

= Rs. 22869 - Rs. 18000 = Rs. 4,869

(c) Here, Principal (P) = Rs. 62500, Time  $\binom{n}{2} = \frac{1}{2} = \frac{3}{2}$  years = 3 years (compounded half yearly)

Rate of interest (R) = 8% = 4% (compounded half yearly)

Amount (A) =  $P\left(1+\frac{R}{100}\right)^n$  $= 62500 \left(1 + \frac{4}{100}\right)^2$  $= 62500 \left(1 + \frac{1}{25}\right)^3$  $= 62500 \left(\frac{26}{25}\right)^3$  $= \frac{62500 \times \frac{26}{25} \times \frac{26}{25} \times \frac{26}{25}}{25} \times \frac{26}{25}$ = Rs. 70,304 Compound Interest (C.I.) = A - P= Rs. 70304 - Rs. 62500 = Rs. 7,804 (d) Here, Principal (P) = Rs. 8000, Time  $\binom{n}{n} = 1$  years = 2 years(compounded half yearly) Rate of interest (R) =  $9\% = \frac{9}{2}\%$  (compounded half yearly) Amount (A) =  $P\left(1+\frac{R}{100}\right)^n$ 

= 8000  $\left(1 + \frac{9}{2 \times 100}\right)^2$ 

=  $8000 \left(1 + \frac{9}{200}\right)^2$  $= 8000 \left(\frac{209}{200}\right)^2$  $8000 \times \frac{209}{200} \times \frac{209}{200}$ = Rs. 8,736.20 Compound Interest (C.I.) = A - P

= Rs. 8736.20 - Rs. 8000

= Rs. 736.20

(e) Here, Principal (P) = Rs. 10,000, Time  $\binom{n}{n}$  = 1 years = 2 years (compounded half yearly)

Rate of interest (R) = 8% = 4% (compounded half yearly)

