Unit Vectors in Rectangular Coordinates



Vectors with Rectangular Unit Vectors

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

Dot Product - Scalar

In 2 dimensions

$$\vec{A} \cdot \vec{B} = A B \cos(\Theta)$$

In any number of dimensions

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

The dot product multiplies the portion of A that is parallel to B with B

Dot Product - Scalar

The dot product multiplies the portion of A that is parallel to B with B

$$\hat{i} \cdot \hat{i} = 1$$

$$\hat{i} \cdot \hat{j} = 0$$

$$\hat{i} \cdot \hat{k} = 0$$

	î	ĵ	î
î	1	0	0
ĵ	0	1	0
ĥ	0	0	1

Cross Product - Vector

The cross product multpilies the portion of A that is *perpendicular* to B with B

$$\hat{i} \times \hat{j} = 0$$
 $\hat{i} \times \hat{j} = \hat{k}$
 $\hat{i} \times \hat{k} = -\hat{j}$

	î	ĵ	î
î	0	î	-ĵ
ĵ	-ĥ	0	î
î	ĵ	-î	0

Cross Product - Vector

In 2 dimensions

$$|\vec{A} \times \vec{B}| = A B \sin(\Theta)$$

In any number of dimensions

$$\begin{bmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix} = (A_y B_z - A_z B_y) \mathbf{\hat{i}} \\ + (A_x B_z - A_z B_x) \mathbf{\hat{j}} \\ + (A_x B_y - A_x B_y) \mathbf{\hat{k}} \end{bmatrix}$$

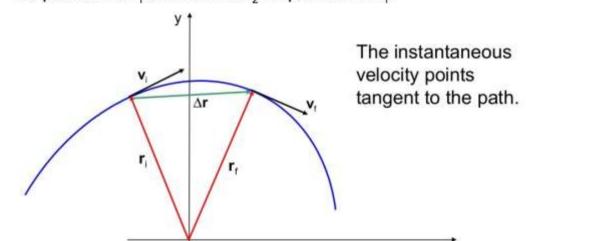
Velocity

MFMcGraw-PHY 1401

Chapter 3b - Revised: 6/7/2010

23

A particle moves along the curved path as shown. At time t₁ its position is r, and at time t, its position is r,



$$\mathbf{v}_{\mathrm{av}} = \frac{\Delta \mathbf{r}}{\Delta t}$$
 Points in the direction of $\Delta \mathbf{r}$

MFMcGraw-PHY Chapter 3b - Revised: 24
1401 6/7/2010

A displacement over an interval of time is a velocity

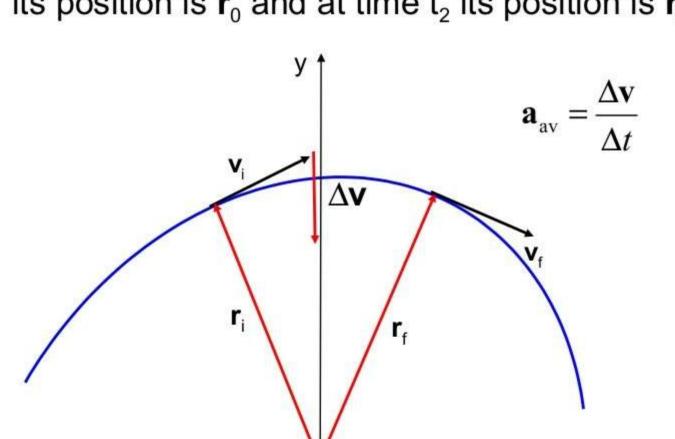
Average velocity =
$$\mathbf{v}_{av} = \frac{\Delta \mathbf{r}}{\Delta t}$$
 (The x - component would be : $v_{av,x} = \frac{\Delta x}{\Delta t}$)

Instantaneous velocity =
$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}$$

The instantaneous velocity is represented by the slope of a line tangent to the curve on the graph of an

Acceleration

A particle moves along the curved path as shown. At time t_1 its position is \mathbf{r}_0 and at time t_2 its position is \mathbf{r}_f .



Points in the direction of Δv .

A nonzero acceleration changes an object's state of motion

Average acceleration =
$$\mathbf{a}_{av} = \frac{\Delta \mathbf{v}}{\Delta t}$$

Instantaneous acceleration =
$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

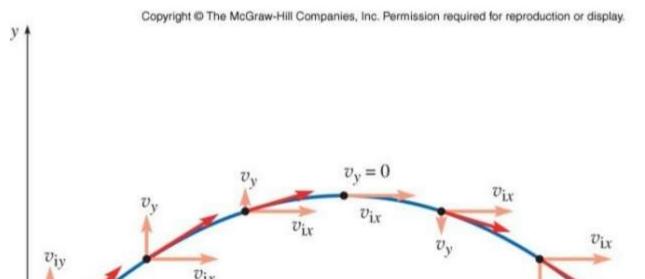
Motion in a Plane with Constant Acceleration - Projectile

What is the motion of a struck baseball? Once it leaves the bat (if air resistance is negligible) only the force of gravity acts on the baseball.

Acceleration due to gravity has a constant value near the surface of the earth. We call it $g = 9.8 \text{ m/s}^2$

Projectile Motion

The baseball has $a_x = 0$ and $a_y = -g$, it moves with <u>constant</u> <u>velocity</u> along the x-axis and with a <u>changing velocity</u> along the y-axis.



Example:

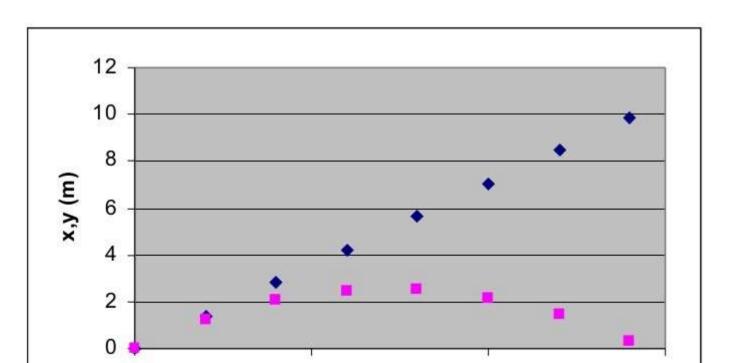
An object is projected from the origin. The initial velocity components are $v_{ix} = 7.07$ m/s, and $v_{iy} = 7.07$ m/s.

Determine the x and y position of the object at 0.2 second intervals for 1.4 seconds. Also plot the results.

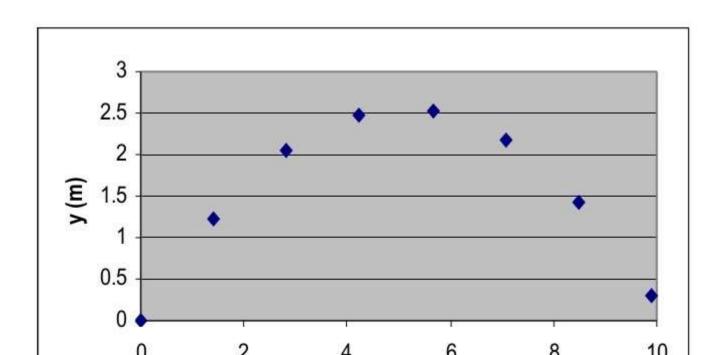
$$\Delta y = y_f - y_i = v_{iy} \Delta t + \frac{1}{2} a_y \Delta t^2$$
$$\Delta x = x_f - x_i = v_{ix} \Delta t$$

t (sec)	x (meters)	y (meters)
50 ST 100 ST	· ************************************	
0	0	0
0.2	1.41	1.22
0.4	2.83	2.04
0.6	4.24	2.48
8.0	5.66	2.52
1.0	7.07	2.17
1.2	8.48	1.43

This is a plot of the x position (black points) and y position (red points) of the object as a function of time.

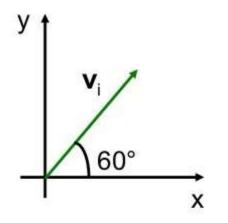


This is a plot of the y position versus x position for the object (its trajectory). The object's path is a parabola.



Example (text problem 3.50): An arrow is shot into the air with $\theta = 60^{\circ}$ and $v_i = 20.0$ m/s.

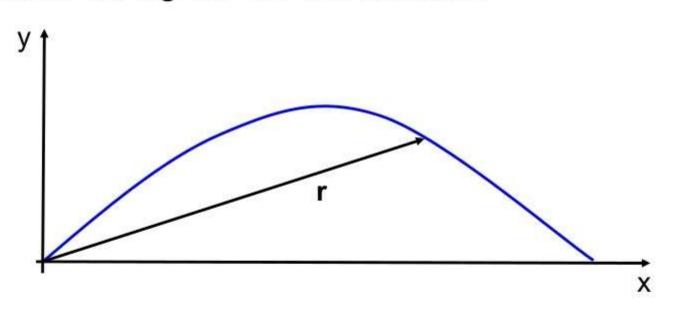
(a) What are v_x and v_y of the arrow when t = 3 sec?



The components of the initial velocity are:

$$v_{ix} = v_i \cos \theta = 10.0 \text{ m/s}$$
$$v_{iy} = v_i \sin \theta = 17.3 \text{ m/s}$$

(b) What are the x and y components of the displacement of the arrow during the 3.0 sec interval?



 $\Delta r_{..} = \Delta x = x_{..} - x_{..} = v_{..} \Delta t + \frac{1}{2} a_{..} \Delta t^{2} = v_{..} \Delta t + 0 = 30.0 \text{ m}$

Example: How far does the arrow in the previous example land from where it is released?

The arrow lands when $\Delta y = 0$. $\Delta y = v_{iy} \Delta t - \frac{1}{2} g \Delta t^2 = 0$

$$\Delta y = (v_{iy} - \frac{1}{2}g\Delta t)\Delta t = 0$$

Solving for
$$\Delta t$$
: $\Delta t = \frac{2v_{iy}}{g} = 3.53 \text{ sec}$

Summary

- Adding and subtracting vectors (graphical method & component method)
- Velocity
- Acceleration
- Projectile motion (here a_x = 0 and a_y = -g)

Projectiles Examples

- Problem solving strategy
- Symmetry of the motion
- Dropped from a plane
- The home run