

पु⊍ना International School

hree Swaminarayan Gurukul, Zunda

rewrite the given statement correctly:

(i) If
$$\mathbf{P} = \{m, n\}$$
 and $\mathbf{Q} = \{n, m\}$, then $\mathbf{P} \times \mathbf{Q} = \{(m, n)(n, m)\}$.

(ii) If A and B are non-empty sets, then A \times B is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If A = {1, 2}, B = {3, 4}, then A × (B $\cap \phi$) = ϕ

Ans. (i) Here $P = \{m, n\}$ and $Q = \{n, m\}$

Number of elements in set P = 2 and Number of elements in set Q = 2

Number of elements in P \times Q=2 \times 2 = 4

But $\mathbb{N} = \{(m, n), (n, m)\}\$ and here number of elements in $\mathbb{P} \times \mathbb{Q} = 2$ Therefore, statement is false.

Correctstatmentis $P \times Q = \{(m,m), (n,n), (n,m), (m,n)\}$

(ii) True

(iii) True

5. If
$$\mathbf{A} = \{-1, 1\}$$
, find $\mathbf{A} \times \mathbf{A} \times \mathbf{A}$.
Ans.Here $\mathbf{A} = \{-1, 1\}$
 $\mathbf{A} \times \mathbf{A} = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$
 $\therefore \mathbf{A} \times \mathbf{A} \times \mathbf{A} \times \mathbf{A}$
 $\{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, 1, -1), (1, 1, 1)\}$
6. If $\mathbf{A} \times \mathbf{B} = \{(a, x), (a, y), (b, x), (b, y)\}$, find \mathbf{A} and \mathbf{B} .
Ans. Given: $\mathbf{A}_{\times} \quad \mathbf{B} = \{(a, x), (a, y), (b, x), (b, y)\}$

 $\{a, b\}$ and B = set of second elements = A = set of first elements = $\{x, y\}$ 7. Let A = $\{1, 2\}$, B = $\{1, 2, 3, 4\}$, C = $\{5, 6\}$ and D = $\{5, 6, 7, 8\}$. Verify that: (i) $\mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$ (ii) $\mathbf{A} \times \mathbf{C}$ is a subset of $\mathbf{B} \times \mathbf{D}$. **Ans.** Given: A = {1, 2}, B = {1, 2, 3, 4}, C = $\{5, 6\}$ and $D = \{5, 6, 7, 8\}$ (i) B \cap C = {1, 2, 3, 4} \cap {5, 6}= ϕ $A \times B = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$ $A \times C = \{(1,5), (1,6), (2,5), (2,6) (A \}$ × B)⊃ (A× C)= ∅(ii) Therefore, from eq. (i) and (ii), $A \times B \cap C$ $= (A \times B) \cap (A \times C)$ (ii) $A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$ $B \times D = \{(1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8), (3,8)$ (4, 5), (4, 6), (4, 7), (4, 8), Therefore, it is clear that each element of A \times C is present in B \times D.A \times C $\subset B \times D$ 8. Let A = {1, 2} and B = {3, 4}, write A \times B. How many subsets will A \times B have? List

them.

Ans. Given: A = {1, 2} and B = {3, 4}

 $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$

Number of elements in $A \times B = 4$

Therefore, Number of subsets of $A \times B = 2^4 = 16$

 $\phi \ \{(2,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}, \{(1,3), (1,4)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\}, \{(1,4), (2,3)\}, \{(1,4), (2,3)\}, \{(2,3), (2,4)\}, \{(1,3), (1,4), (2,3)\}, \{(1,3), (1,4), (2,3), (2,4)\}, \{(1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\}$

9. Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2)(z,1) are in $A \times B$.

Ans. Here $(x,1) \in A \times B$

 $\Rightarrow x \in A \text{ and } 1 \in B$

 $(y,2) \in \mathbf{A} \times \mathbf{B}$

```
\Rightarrow y \in A and 2 \in B
```

```
(z,1) \in \mathbf{A} \times \mathbf{B}
```

```
\Rightarrow z \in A and 1 \in B
```

But it is given that n(A) = 3 and n(B) = 2

$$A = \{x, y, z\}$$
 and $B = \{1, 2\}$

10. The Cartesian Product $A \times A$ has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

Ans. Here
$$(-1, 0) \in A \times A$$

 $\Rightarrow -1 \in A \text{ and } 0 \in A$

 $(0,1) \in \mathbf{A} \times \mathbf{A}$

$$\Rightarrow 0 \in A \text{ and } 1 \in A$$

$$1 \in A \text{ and } 1 \in A$$
But it is given that $n(A \times A) = 9$ which implies that $n(A) = 3$

$$A = \{-1, 0, 1\}$$
And $A \times A = \{(-1, -1), (-1, 0), (-1, 1), (0, 0, 1), (0, 1), (1, -1), (1, 0), (1, 1)\}$
Therefore, the remaining elements of $A \times A$ are
$$(-1, -1), (-1, 1), (0, 0), (1, -1), (1, 0), (1, 1)$$

Exercise 2.2

1. Let A = {1, 2, 3,, 14}. Define a relation R from A to A by R = $\{(x, y): 3x - y = 0, where x, y \in A\}$. Write down its domain co-domain and range.

Ans. Given: A = {1, 2, 3,, 14}

The ordered pairs which satisfy 3x - y = 0 are (1, 3), (2, 6), (3, 9) and (4, 12).

 $R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

Domain = $\{1, 2, 3, 4\}$

Range = {3, 6, 9, 12}

Co-domain={1,2,3,...., 14}

2. Define a relation R on the set N of natural numbers $R = \{(x, y): y = x + 5, x \text{ is a natural number less than 4: } x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Ans. Given: R =

 $\{(x, y: y = x + 5, x \text{ is a natural number less than } 4: x, y \in \mathbb{N})\}$ Putting x = 1,

2,3 in y = x + 5, we get y = 6,7,8

 $R = \{(1, 6), (2, 7), (3, 8)\}$

Domain = {1, 2, 3}

Range = {6, 7, 8}

3. A = {1, 2, 3 5} and B = {4, 6, 9}. Define a relation R from A to B by R = the

difference between x and v is odd: $x \in A, y \in B$. Write R in roster

form. Ans. Given: A={1,2,3,5}and B={4,6,9}, $x \in A, y \in B$

$$\begin{array}{l} \therefore x - y = (1 - 4), (1 - 6), (1 - 9), (2 - 4), (2 - 6), (2 - 9), (3 - 4), (3 - 6), (3 - 9), \\ (5 - 4), (5 - 6), (5 - 9) \end{array}$$

$$\Rightarrow x - y = -3, -5, -8, -2, -4, -7, -1, -3, -6, 1, -1, -4$$

$$\therefore R = ((1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)) \end{array}$$
4. Figure shows a relationship between the sets P and Q. Write this relation:
(i) in set-builder form
(ii) roster form

$$\begin{array}{c} & & \\ &$$

Ans. Given: A = {1, 2, 3, 4,

A set of ordered pairs (a, b) where b is exactly divisible by a.

(i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\}$

(ii) Domain of $R = \{1, 2, 3, 4, 6\}$

(iii) Range of $R = \{1, 2, 3, 4, 6\}$

6. Determine the domain and range of the relation R defined

by R= { $(x, x+5): x \in (0, 1, 2, 3, 4, 5)$ }

Ans. Given: R = {(x, x+5): $x \in (0, 1, 2, 3, 4, 5)$ } = {(a, b): a = 0, 1, 2, 3, 4, 5}

 $\therefore a = x$ and b = x + 5

Putting a = 0, 1, 2, 3, 4, 5 we get b = 5, 6, 7, 8, 9, 10

Domain of $R = \{0, 1, 2, 3, 45\}$

Range of R = {5,6,7,8,9,10}

7. Write the relation R = $\{(x, x^3): x \text{ is a prime number less than } 10\}$ in roster form.

Ans. Given: R = { (x, x^3) : x is a prime number less than 10}

Putting X = 2, 3, 5, 7

R = {(2, 8), (3, 27), (5, 125), (7, 343)}

8. Let $A = \{x, y, z\}$ and $B = \{I, 2\}$. Find the number of relations from A to B.

Ans. Given: $A = \{x, y, z\}$ and $B = \{1, 2\}$

Number of elements in set A = 3 and Number of elements in set B = 2 Number of

subsets of $A \times B = 3 \times 2 = 6$

Number of relations from A to $B = 2^6$.

9. Let R be the relation on Z defined by $R = \{(a,b):a,b \in \mathbb{Z} \mid s an integer\}$. Find the domain and range of R.

Ans. Given: $R = \{(a, b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$

= $\{(a, b): a, b \in \mathbb{Z}, \text{ both } a \text{ and } b \text{ are even or both } a \text{ and } b \text{ are odd} \}$

= $\{(a, b): a, b \in \mathbb{Z}, (a \text{ and } b \text{ are even}) \cup (a \text{ and } b \text{ are odd})\}$

Domain of R = Z

Range of R = Z

1. Which of the following are functions? Give reasons. If it is a function determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
(iii) {(1, 3), (1, 5), (2, 5)}

Ans. (i) Given Relation is {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Allvalues of X are distinct. Each value of X has a unique value of Y-

Therefore, the relation is a function.

Domain of function = $\{2, 5, 8, 11, 14, 17\}$

Range of function ={1}

(ii) Given: Relation is {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

Allvalues of x are distinct. Each value of x has a unique value of y-

Therefore, the relation is a function.

Domain of function = {2, 4, 6, 8, 10, 12, 14}

Range of function = {1, 2, 3, 4, 5, 6, 7}

(iii) Given: Relation is {(1, 3), (1, 5), (2, 5)}

This relation is not a function because there is an element 1 which is associated to two elements 3 and 5.

2. Find the domain and range of the following real functions:

(i)
(ii)
$$f(x) = \sqrt{9 - x^2}$$

Ans. (i) given f(x) = -|x| The function is defined for all real values of x.

Domain of the function = R

Now, when x < 0, then |x| = -x

$$\therefore f(x) = -(-x), x < 0$$

When

$$\therefore f(x) = -|0| = 0$$

$$x = 0, |x| = 0$$

When

$$x > 0, |x| = x$$

$$\therefore f(x) = -x < 0$$

Therefore, $f(x) \le 0$ for all real values

of Range of function =
$$(-\infty, 0]$$

(ii) Given:
$$f(x) = \sqrt{9-x^2}$$
.

The function is not defined when $9 - x^2 < 0$.

... Domain of function =
$$\{x: 9 - x^2 \ge 0\} = \{x: x^2 - 9 \le 0\}$$

 $f(x) = -|x|$

$$= \{r \cdot (r+3)(r-3) < 0\} = [-3,3]$$

Range of function = [0,3]

3. A function f is defined by f(x) = 2x - 5. Write down the values of

(i) f(0) (ii) f(7) (iii) f(-3)

Ans. Given: f(x) = 2x - 5

(i) Putting x = 0, $f(0) = 2 \times 0 - 5 = -5$

(ii) Putting $x = 7_{*}$

$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii) Putting x = -3,

 $f(-3) = 2 \times (-3) - 5 = 6 - 5 = -11$

4. The function t which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $\frac{9^{\circ}}{1} + 32$ Find:

(i) t(0)

t(28)

(ii) t(-10)

(iv) The value of C when

$$t(C) = 212$$
 Ans. Given:
 $t(C) = \frac{9C}{5} + 32$
(i) Putting C = 0,
 $t(0) = \frac{9 \times 0}{5} + 32 = 32$
(ii) Putting C = 28,
 $t(28) = \frac{9 \times 28}{5} + 32 = \frac{252}{5}$

$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = -18 + 32 = -18$$

(iii) Putting C = -10, (iv) Putting $t(C) = 212, 212 = \frac{9C}{5} + 32$ $\Rightarrow \frac{9C}{5} = 212 - 32$ $\Rightarrow \frac{9C}{5} = 180$ \Rightarrow C = 180 $\times \frac{5}{9}$ = 100 5. Find the range of each of the following functions: (i) $f(x) = 2 - 3x, x \in \mathbb{R}, x > 0$ (ii) $f(x) = x^2 + 2, x$ is a real number. (iii) f(x) = x, x is a real number. Ans. (i) Given: f(x) = 2 - 3x, $x \in Rand x > 0$ $\therefore 3x > 0 \implies -3x < 0$ $\Rightarrow 2 - 3x < 2$ Range offunction $= \{a \in \mathbb{R} : a < 2\} = (-\infty, 2)$ R (ii) Given: $f(x) = x^2 + 2, x \in$ $\therefore x^2 \ge 0$ for $x \in \mathbb{R}$ $\Rightarrow x^2 + 2 \ge 2$... Range of function $= \{ a \in \mathbb{R} : a \ge 2 \forall a \in \mathbb{R} \} = [2\infty]$ (iii) Given: $f(x) = x \quad x \in \mathbb{R}$ Range of function = R

