

PUNA INTERNATIONAL SCHOOL

CLASS – 9 SUBJECT - MATHS

Semester - 2

SAMPLE NOTE-BOOK

- (II) **A circle has only finite number of equal chords.**
- (III) **If a circle is divided into three equal arcs each is a major arc.**

 (IV)A chord of a circle, which is twice as long as its radius is a diameter of the circle.

 (V)Sector is the region between the chord and its corresponding arc.

 (VI)A circle is a plane figure.

Ans. (i) True

- (II) False
- (IV) False
- (V) True
- (V) False
	- (VI) True

CHAPTER 10 Circles

Ex. 10.2

SAMAN SAMAN SAMAN SAMAN SA

1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Ans. I Part: Two circles are said to be congruent if and only if one of them can be superposed on the other so as to cover it exactly.

Let C $(0, \vec{l}')$ and C $(0', \vec{r})$ be two circles. Let us imagine that the circle C $(0', \vec{r})$ is superposed on C $(0, \vec{l}')$ *r*) so that O' coincide with O. Then it can easily be seen that C (O', ⁵) will cover C (O, *r*²) completely if and only if $r = 5$.

Hence we can say that two circles are congruent, if and only if they have equal radi and only if $r = s$.

Hence we can say that two circles are congruent, if and only if they have equal radii.

3. Part: Given: In a circle $(0, \mathbb{F})$, AB and CD are two equal chords, subtend \angle AOB and \angle COB at the centre.

To Prove: \angle AOB = \angle COD

Proof: In Δ AOB and Δ COD,

 $AB = CD$ [Given]

 $AO = CO$ [Radii of the same circle]

BO = DO [Radii of the same circle]

 $\Delta_{\rm AOB} \cong \Delta_{\rm COD}$ [By SSS congruency]

$$
\Rightarrow \angle_{AOB} = \angle_{COD} [By C.P.C.T.]
$$

Hence Proved.

こくこくこく こくこくこくこくこく

SAMAN SAMAN SAMAN SAMAN SAMAN SAMAN SA

To Prove: AB = CD

Proof: : In Δ AOB and Δ COD,

R

AO = CO [Radii of the same circle]

BO = DO [Radii of the same circle]

 $\therefore \Delta_{\rm AOB} \cong \Delta_{\rm COD}$ [By SAS congruency]

 \angle AOB = \angle COD [Given]

 \Rightarrow AB = CD [By CPCT]

Hence proved.

REAR STRACT STRACT

4. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Ans. Given: In a circle (O, \vec{r}), AB and CD subtend two angles at the centre such that \angle AOB = \angle COD

CHAPTER 10 Circles

Ex. 10.3

USA KANANG KANANG KANANG KANANG KANANG K

1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Ans. From the figure, we observe that when different pairs of circles are drawn, each pair have two common points (say A and B). Maximum number of common points are two in each pair of circles.

Suppose two circles C (O, \vec{r}) and C (O', \vec{r}) intersect each other in three points, say A, B and C.

Then A, B and C are non-collinear points.

We know that:

There is one and only one circle passing through three non-collinear points.

Therefore, a unique circle passes through A, B and C.

O' coincides with O and $S = r$

 \cdot \cap

A contradiction to the fact that $C(O', S) \neq C(O, r)$

Hence two different circles cannot intersect each other at more than two points.

2. Suppose you are given a circle. Give a construction to find its centre.

Ans. Steps of construction:

- Take any three points A, B and C on the circle.
- Join AB and BC.
- Draw perpendicular bisector say LM of AB.
- Draw perpendicular bisector PQ of BC.
- Let LM and PQ intersect at the point O.

Then O is the centre of the circle.

Verification:

O lies on the perpendicular bisector of AB.

 \therefore OA = OB ………..(i)

O lies on the perpendicular bisector of BC.

OB = OC ……….(ii)

From eq. (i) and (ii), we observe that

OA = OB = OC = (say) Three non-collinear points A, B and C are at equal distance from the point O inside the circle. Hence O is the centre of the circle. **3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord. Ans. Given**: Let C (O, r) and C (O', r') be two circles intersecting at A and B. AB is the common chord. **To prove**: OO' is the perpendicular bisector of the chord AB, i.e., AM = MB and OMA = OMB = **Construction**: Join OA, OB, O'A, O'B. **Proof**: In triangles OAO' and OBO', OA = OB [Each radius] O'A = O'B [Each radius] OO' = OO' [Common] OAO' OBO' [By SSS congruency] AOO' = BOO' [By CPCT] AOM = BOM (i)

CHAPTER 10 Circles

Ex. 10.4

SAMAN SAMAN SAMAN SA

2. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.

common chord.

Hence AOO' is a right triangle, right angled at O'.

Since, perpendicular drawn from the centre of the circle bisects the chord. Hence O' is the mid-point of the chord AB. Also O' is the centre of the circle II. Therefore length of chord AB = Diameter of circle II

Length of chord $AB = 2x3 = 6$ cm.

4. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Ans. Given: Let AB and CD are two equal chords of a circle of centers O intersecting each other at point E within the circle.

5. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chord.

Ans. Given: AB and CD be two equal chords of a circle with centre O intersecting each other with in the

circle at point E. OE is joined.

Construction: Draw OM
$$
\perp
$$
 AB and

\nOM \perp CD.

\nProof: In right angled triangles OME and ONE,

\n \angle OME = \angle ONE [Each 90°] [By construction]

\nOM = ON [Equal chords are equidistant from the centre]

\nOR = OF [Common]

\n \triangle OME = \triangle ONE [RHS rule of congruency]

\n \angle OEM = \angle ONE [By C.P.C.T.]

\nIII

\nIf a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD. (See figure)

\nAns. Given: Line I intersects two concentric circles with centre O at points A, B, C and D.

\nProof: AD is a chord of outer circle and OL \perp AD.

\nProof: AD is a chord of outer circle and OL \perp AD.

\nNow, BC is a chord of inner circle and

XXXXXXXXXXXXXX

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

 $OL - BC$

 $BL = LC$...(ii) [Perpendicular drawn from the centre bisects the chord]

 $AI-BI=LD-LC$

 \Rightarrow AB=CD

5. Three girls Reshma, Salma and Mandip are standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Ans. Let Reshma, Salma and Mandip takes the position C, A and B on the circle. Given: AB = AC

The centre lies on the bisector of \angle BAC.

Let M be the point of intersection of BC and OA.

Again, since $AB = AC$ and AM bisects

 \angle CAB.

SARA SARA SA SARA SA SA SA SA SA SA SA SA

 \therefore AM $-$ CB and M is the mid-point of CB.

Let OM = $\frac{x}{t}$ then MA = $5 - x$

From right angled triangle OMB,

 $OR^2 = OM^2 + MR^2$

$$
\implies 5^2 = x^2 + MB^2 \dots \dots \dots (i)
$$

Again, in right angled triangle AMB,

$$
AB^2 = AM^2 + MB^2
$$

\n
$$
\Rightarrow e^2 = (5-x)^2 + MB^2 \dots \dots \dots (i)
$$

\nEquating the value of MB² from eq. (i) and (ii),
\n
$$
5^2 - x^2 = 6^2 - (5-x)^2
$$

\n
$$
\Rightarrow (5-x)^2 - x^2 = 6^2 - 5^2
$$

\n
$$
\Rightarrow 25 - 10x + x^2 - x^2 = 36 - 25
$$

\n
$$
\Rightarrow 10x = 25 - 11
$$

\n
$$
\Rightarrow 10x = 14
$$

\n
$$
\Rightarrow x = \frac{14}{10}
$$

\nHence, from eq. (i),
\nMB² = $5^2 - x^2 = 5^2 - (\frac{14}{10})^2$
\n
$$
= (5 + \frac{14}{10})(5 - \frac{14}{14}) = \frac{64}{10} \times 38 = 10
$$

\n
$$
\Rightarrow MB = \frac{8 \times 6}{10} = 4.8
$$
 cm
\n
$$
\therefore BC = 2MB = 2 \times 4.8 = 9.6
$$
 cm

(i) A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Ans. Let position of three boys Ankur, Syed and David are denoted by the points A, B and C respectively.

KARA KANANG KANANG KATA KANANG KA

<u>Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>x

Now, $CE - BC$

$$
\therefore BE = EC = \frac{1}{2} BC \quad [\because \text{ Perpendicular drawn from the centre bisects the chord}]
$$

\n⇒ BE = EC = $\frac{1}{2}(2\sqrt{3}x)$ [Using eq. (i)]
\n⇒ BE = EC = $\sqrt{3}x$
\nNow in right angled triangle BEO,
\nOE² + BE² = OB² [Using Pythagoras theorem]
\n⇒ $x^2 + (\sqrt{3}x)^2 = (20)^2$
\n⇒ $x^2 + 3x^2 = 400$
\n⇒ $4x^2 = 400$
\n⇒ $x^2 = 100$
\n⇒ $x = 10$ m
\nAnd $a = 2\sqrt{3}x = 2\sqrt{3} \times 10 = 20\sqrt{3}$ m
\nThus distance between any two boys is $\frac{20\sqrt{3}}{m} = \frac{\pi}{3}$

CHAPTER 10 Circles

Ex. 10.5

SAN SAN SAN SAN SAN SAN SAN SAN

くうくう くうくう くうこう くうこう くうこうこう くうこうこう

1. In figure, A, B, C are three points on a circle with centre O such that $\angle BOC = 30^{o}, \, \angle AOB_{60}^{o}.$ If D is a point on the circle other than the arc ABC, find $\angle ADC$

Ans. \angle AOC = \angle AOB + \angle BOC \Rightarrow \angle AOC = 60° + 30° = 90° Now \angle AOC = 2 \angle ADC

[¹] Angled subtended by an arc, at the centre of the circle is double the angle subtended by the same arc at any point in the remaining part of the circle]

$$
\Rightarrow \angle_{ADC} = \frac{1}{2} \angle AOC
$$

$$
\Rightarrow \angle_{ADC} = \frac{1}{2} \times 90^\circ = 45^\circ
$$

1. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord on a point on the minor arc and also at a point on the major arc.

Ans. Let AB be the minor arc of circle.

$$
\Rightarrow \angle_{ROP} = 2 \angle_{POP}
$$

\n⇒ $\angle_{ROP} = 2 \times 100^{\circ} = 200^{\circ}$
\nNow $m\overline{PR} + m\overline{RP} = 360^{\circ}$
\n⇒ $\angle_{POR} + \angle_{ROP} = 360^{\circ}$
\n⇒ $\angle_{POR} + 200^{\circ} = 360^{\circ}$
\n⇒ $\angle_{POR} = 360^{\circ} - 200^{\circ} = 160^{\circ}$(i)
\nNow \triangle_{OPR} is an isosceles triangle.
\n \therefore OP = OR [radii of the circle]
\n⇒ $\angle_{OPR} = \angle_{ORP}$ [angles opposite to equal sides are equal].....(ii)
\nNow in isosceles triangle OPR ,
\n $\angle_{OPR} + \angle_{ORP} + \angle_{POR} = 180^{\circ}$
\n⇒ $\angle_{OPR} + \angle_{ORP} + 160^{\circ} = 180^{\circ}$
\n⇒ $2 \angle_{OPR} = 10^{\circ}$
\n⇒ $2 \angle_{OPR} = 20^{\circ}$
\n⇒ $\angle_{OPR} = 10^{\circ}$
\n4. In figure, $\angle_{ABC} = \frac{69^{\circ} \angle_{ACB} = 31^{\circ}$, find \angle_{BDC} .

Ans. In triangle ABC,

KARA KANANG KANANG

$$
\angle_{BAC} = \angle_{ABC} = 180^{\circ}
$$
\n
$$
\Rightarrow \angle_{BAC} = 180^{\circ} + 31^{\circ} = 180^{\circ}
$$
\n
$$
\Rightarrow \angle_{BAC} = 180^{\circ} - 69^{\circ} - 31^{\circ}
$$
\n
$$
\Rightarrow \angle_{BAC} = 80^{\circ} \dots (i)
$$

Since, A and D are the points in the same segment of the circle.

$$
\therefore \angle_{BDC} = \angle_{BAC}
$$

[Angles subtended by the same arc at any points in the alternate segment of a circle are equal]

 \Rightarrow \angle BDC = 80° [Using (i)]

5.In figure, A, B, C, D are four points on a circle. AC and BD intersect at a point E such that \angle BEC = 130° and \angle ECD = 20° Find \angle BAC.

$$
\begin{pmatrix}\n\sqrt{\frac{1}{10}} & \frac{1}{100} \\
\frac{1}{100} & \frac{1}{100}\n\end{pmatrix}
$$

糸

Ans. Given: \angle BEC = 130° and \angle ECD = 20°

$$
\angle
$$
 DEC = 180[°] – \angle BEC = 180[°] – 130[°] = 50[°] [Linear pair]

Now in Δ_{DEC} ,

$$
\angle
$$
 DEC + \angle DCE + \angle EDC = 180° [Angle sum property]
\n $\Rightarrow 50^{\circ} + 20^{\circ} + \angle$ EDC = 180°

 \Rightarrow \angle _{EDC} = 110°

BAC = EDC = [Angles in same segment] **6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. DBC = BAC is find BCD. Further if AB = BC, find ECD. Ans.** For chord CD (Angles in same segment) [Given: CBD=] = (Opposite angles of a cyclic quadrilateral are supplementary] AB = BC (given) (Angles opposite to equal sides of a triangle are equal) We have

7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Ans. Let ABCD a cyclic quadrilateral having diagonals as BD and AC intersecting each other at point O.

$$
\begin{array}{|c|}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{|c|}\n\hline\n\end{array}
$$

(Consider BD as a chord)

FAATA FA

 $BAD = 180^{\circ}$ (Opposite angles of a cyclic quadrilateral are supplementary) $\angle BC$

$$
\angle BCD = 180^\circ - 90^\circ = 90^\circ
$$

$$
\angle ADC = \frac{1}{2} \angle AOC = \frac{180^\circ}{2} = 90^\circ
$$

(Considering AC as a chord)

 $\angle ADC + \angle ABC = 180^\circ$ (Opposite angles of a cyclic quadrilateral are supplementry) $90^\circ + \angle ABC = 180^\circ$

$$
\angle ABC = 90^\circ
$$

Here, each interior angle of cyclic quadrilateral is of 90° and its diagonals are equal (given). Hence it is a rectangle.

8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Ans. Given: A trapezium ABCD in which AB CD and AD = BC.

To prove: The points A, B, C, D are cyclic.

9. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D, P, Q respectively (see figure). Prove that \angle ACP $=$ \angle _{OCD}.

Ans. In triangles ACD and QCP,

 $\angle A = \angle P$ and $\angle Q = \angle D$ [Angles in same segment]

 \therefore \angle ACD = \angle QCP [Third angles of two triangles](i)

Subtracting \angle PCD from both the sides of eq. (i), we get,

$$
\angle_{ACD} = \angle_{PCD} = \angle_{QCP} = \angle_{PCD}
$$

$$
\Rightarrow \angle_{ACP} = \angle_{QCD}
$$

Hence proved.

10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Ans. Given: Two circles intersect each other at points A and B. AP and AQ be their respective diameters.

To prove: Point B lies on the third side PQ.

Construction: Join A and B.

Proof: AP is a diameter.

$$
\frac{1}{2} \cdot \frac{1}{2} = 90^{\circ}
$$

[Angle in semicircle]

Also AQ is a diameter.

$$
\frac{1}{2} \cdot \frac{1}{2} \leq 2
$$

[Angle in semicircle]

$$
\angle_{1^+} \angle_{2=}
$$

$$
\Rightarrow \angle_{\text{PBO}} =
$$

PBQ is a straight line. \Rightarrow

Thus point B. i.e. point of intersection of these circles lies on the third side i.e., on PQ.

7. ABC and ADC are two right triangles with common hypotenuse AC. Prove that \angle **CAD =** \angle CBD.

Ans. We have ABC and ADC two right triangles, right angled at B and D respectively.

If we draw a circle with AC (the common hypotenuse) as diameter, this circle will definitely passes through of an arc AC, Because B and D are the points in the alternate segment of an arc AC.

Now we have $\widehat{\text{CD}}$ subtending \angle CBD and \angle CAD in the same segment.

 \therefore \angle CAD = \angle CBD

Hence proved.
\nHence proved.
\n12. Prove that a cyclic parallelogram is a rectangle.
\nAns. Given: A cyclic parallelogram ABCD.
\nTo prove: ABCD is a rectangle.
\nProof:
$$
\angle B = \angle D
$$
 [Opposite angles of a parallelogram are equal]
\nBut, $\angle B + \angle D = 180^\circ$ [Sum of opposite angles of a parallelogram]
\n $\Rightarrow 2\angle B = 180^\circ$
\n $\Rightarrow \angle B = 90^\circ$ and $\angle D = 90^\circ$
\nSimilarly,
\n $\angle A = 90^\circ$ and $\angle C = 90^\circ$
\nHence, ABCD is a rectangle.

CHAPTER 10 Circles

Ex. 10.6

TAN TAN TAN TANGGARAN TANGGANG TANGGANG TANGGANG TANGGANG TANGGANG TANGGANG TANGGANG TANGGANG TANGGANG TANGGAN

1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Ans. Let two circles with respective centers A and B intersect each other at points C and D.

2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD

Ans. Let O be the centre of the circle. Join OA and OC.

Since perpendicular from the centre of the circle to the chord bisects the chord. $A = EB = EB = BE$

 $1 \times AB = 1 \times 5 = \frac{5}{2}$ cm $\overline{2}$ $\overline{2}$ And CF = FD = $\frac{1}{2}$ CD = $\frac{1}{2}$ 11 = $\frac{11}{2}$ cm

Again In right angled triangle CFO,

$$
OC^2 = CF^2 + OF^2
$$

[Using Pythagoras theorem]

$$
\Rightarrow r^2 = \left(\frac{11}{2}\right)^2 + \left(6 - x\right)^2 \dots (ii)
$$

Equating eq. (i) and (ii),

$$
\left(\frac{5}{2}\right)^2 + x^2 = \left(\frac{11}{2}\right)^2 + (6-x)^2
$$

\n
$$
\Rightarrow \frac{25}{4} + x^2 = \frac{121}{4} + 36 + x^2 - 12x
$$

\n
$$
\Rightarrow 12x = \frac{121}{4} - \frac{25}{4} + 36
$$

\n
$$
\Rightarrow 12x = \frac{96}{4} + 36
$$

\n
$$
\Rightarrow 12x = 24 + 36
$$

\n
$$
\Rightarrow 12x = 60
$$

\n
$$
\Rightarrow x = 5
$$

\nNow from eq. 0,
\n
$$
r^2 = \frac{25}{4} + x^2
$$

\n
$$
\Rightarrow r^2 = \frac{25}{4} + 5^2
$$

\n
$$
\Rightarrow r^2 = \frac{125}{4}
$$

$$
\Rightarrow r = \frac{5\sqrt{5}}{2} \text{ cm}
$$

3. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord form the centre?

Ans. Let AB = 6 cm and CD = 8 cm are the chords of circle with centre O. Join OA and OC.

Since perpendicular from the centre of the circle to the chord bisects the chord.

$$
AE = EB = \frac{1}{2}AB = \frac{1}{2}x6 = 3
$$
 cm

And CF = FD =
$$
\frac{1}{2}
$$
 CD = $\frac{1}{2}$ x 8 = 4 cm

Perpendicular distance of chord AB from the centre O is OE.

$$
\cdot \cdot \cdot \cdot \cdot \cdot = 4 \text{ cm}
$$

Now in right angled triangle AOE,

$$
OA^2 = AE^2 + OE^2
$$
 [Using Pythagoras theorem]

$$
\Rightarrow r^2 = 3^2 + 4^2
$$

爻

$$
\Rightarrow r^2 = -9 + 16 = 25
$$

$$
\Rightarrow r = 5 \text{ cm}
$$

KANANG KANANG KANANG K

Perpendicular distance of chord CD from the center O is OF.

Now in right angled triangle OFC,

 $OC^2 = CF^2 + OF^2$ [Using Pythagoras theorem]

$$
\Rightarrow r^2 = 4^2 + {\rm (OF)}^2
$$

$$
\Rightarrow 5^2 = 4^2 + {\rm (OF)}^2 \newline \Rightarrow 25 = 16 + {\rm (OF)}^2 \newline
$$

$$
\Rightarrow_{\mathrm{OF}^2=9}
$$

$$
\rightarrow
$$
OF = 3cm

Hence distance of other chord from the centre is 3 cm.

4. Let the vertex of an angle ABC be located outside a circle and let the sides of the

angle intersect chords AD and CE with the circle. Prove that $\angle ABC$ is equal to half the difference of **the angles subtended by the chords AC and DE at the centre.**

Ans. Vertex B of \angle ABC is located outside the circle with centre O.

Side AB intersects chord CE at point E and side BC intersects chord AD at point D with the circle.

We have to prove that

$$
\angle_{ABC} = \frac{1}{2} [\angle AOC - \angle DOE]
$$

 \overrightarrow{S} Join OA, OC, OE and OD.

REAR STRIKE STRIKE

 $\frac{1}{2}N_{\text{OW}} \angle_{\text{AOC} = 2} \angle_{\text{AEC}}$

[Angle subtended by an arc at the centre of the circle is twice the angle subtended by the same arc at any point in the alternate segment of the circle]

$$
\Rightarrow \frac{1}{2} \angle AOC = \angle AEC ... (i)
$$

\nSimilarly $\frac{1}{2} \angle DOE = \angle DCE ... (ii)$
\nSubtracting eq. (ii) from eq. (i),
\n $\frac{1}{2} [\angle AOC - \angle DOE] = \angle AEC - \angle DCE ... (iii)$
\nNow $\angle AEC = \angle ADC$
\n[Angles in same segment in circle](iv)
\nAlso $\angle DCE = \angle DAE$
\n[Angles in same segment in circle](v)
\nUsing eq. (iv) and (v) in eq. (iii),
\n $\frac{1}{2} [\angle AOC - \angle DOE]$
\n $= \angle DAE + \angle ABD - \angle DAE$
\n $\Rightarrow \frac{1}{2} [\angle AOC - \angle DOE] = \angle ABD$

Hence proved.

5. Prove that the circle drawn with any drawn with any side of a rhombus as a diameter, passes through the point of intersection of its diagonals.

Ans. Let ABCD be a rhombus in which diagonals AC and BD intersect each other at point O.

As we know that diagonals of a rhombus bisect and perpendicular to each other.

$$
\frac{1}{2} \angle_{AOB} = 90^{\circ}
$$

And if we draw a circle with side AB as diameter, it will definitely **pass through point O** (the point intersection of diagonals) because then \angle AOB = 90° will be the angle in a semi-circle.

 1.144334

6. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced it necessary) at E. Prove that AE = AD.

Ans. In figure (a),

ABCD is a parallelogram.

$$
\Rightarrow \angle_1 = \angle_3 \dots(i)
$$

ABCE is a cyclic quadrilateral.

$$
\therefore \angle_1 + \angle_6 = 180^\circ \dots (ii)
$$

And
$$
\angle
$$
 5 + \angle 6 = 180^o(iii)

[Linear pair]

From eq. (ii) and (iii), $\angle 1 = \angle 5$ (iv)

Now, from eq. (i) and (iv),

 $23 = 25$

Now in triangle AED,

$$
\angle 5 = \angle 6
$$

 \Rightarrow AE = AD [Sides opposite to equal angles]

Hence in both the cases, $AE = AD$

7. AC and BD are chords of a circle which bisect each other. Prove that:

- **(i) AC and BD are diameters.**
- **(ii) ABCD is a rectangle.**

Ans. Given: AC and BD of a circle bisect each other at O. Then

 $OA = OC$ and $OB = OD$

To prove: (i) AC and BD are the diameters. In other words, O is the centre of the circle.

Lat. P.P. Sal

(ii) ABCD is a rectangle.

Proof: (i) In triangles AOD and BOC,

 $AO = OC$ [given]

$$
\angle
$$
 AOD =
$$
\angle
$$
 BOC [Vertically opp.]

 $OD = OB$ [given]

$$
\therefore \Delta_{\text{AOD}} \cong \Delta_{\text{COB}} \text{ [SAS congruency]}
$$

 \Rightarrow AD = CB [By C.P.C.T.]

Similarly $\Delta_{\rm AOB} \equiv \Delta_{\rm COD}$ \Rightarrow _{AB=CD} \Rightarrow $\widehat{AB} \cong \widehat{CD}$ [Arcs opposite to equal chords] \Rightarrow $\widehat{AB} + \widehat{BC} \cong \widehat{CD} + \widehat{BC}$ \Rightarrow ABC \cong BCD \Rightarrow AC = BD [Chords opposites to equal arcs] AC and BD are the diameters as only diameters can bisects each other as the chords of the circle. (ii) AC is the diameter. [Proved in (i)] $\therefore \angle_B = \angle_D = 90^\circ$ (i) [Angle in semi-circle] Similarly BD is the diameter. \therefore \angle A = \angle C = 90° ...(ii) [Angle in semi-circle] Now diameters AC = BD \Rightarrow $\widehat{AC} \cong \widehat{BD}$ [Arcs opposite to equal chords] \Rightarrow $\widehat{AC} - \widehat{DC} \cong \widehat{BD} - \widehat{DC}$ \Rightarrow AD \cong BC \Rightarrow AD = BC [Chords corresponding to the equal arcs](iii) Similarly $AB = DC$ (iv) From eq. (i), (ii), (iii) and (iv), we observe that each angle of the quadrilateral is 90° and opposite sides are equal.

Hence ABCD is a rectangle.

8. Bisectors of angles A, B and C of a triangle ABC intersect its circum-circle at D, E and F

respectively. Prove that angles of the triangle are

$$
\left(90^\circ - \frac{A}{2}\right), \left(90^\circ - \frac{B}{2}\right)
$$
 and

$$
\left(90^\circ - \frac{C}{2}\right)
$$
 respectively.

Ans. According to question, AD is bisector of $\angle A$.

Since the angles in the same segment of a circle are equal.

$$
\therefore \angle 9 = \angle 3 \text{ [angles subtended by} \qquad \widehat{AE} \text{]} \dots \text{(i)}
$$

And
$$
\angle 8 = \angle 5 \text{ [angles subtended by} \qquad \widehat{FA} \text{]} \dots \text{(ii)}
$$

Adding both equations,

$$
\angle 9 + \angle 8 = \angle 3 + \angle 5
$$

\n
$$
\Rightarrow \angle_{D} = \frac{B}{2} + \frac{C}{2}
$$

\nSimilarly $\angle E = \frac{A}{2} + \frac{C}{2}$
\nAnd $\angle F = \frac{A}{2} + \frac{B}{2}$
\nInt triangle DEF,
\n $\angle D + \angle E + \angle F = 180^{\circ}$ [Angle sum property]
\n $\Rightarrow \angle_{D} = 180^{\circ} - (\angle E + \angle F)$
\n $\Rightarrow \angle_{D} = 180^{\circ} - (\frac{A}{2} + \frac{C}{2} + \frac{A}{2} + \frac{B}{2})$
\n $\Rightarrow \angle_{D} = 180^{\circ} - (\frac{A}{2} + \frac{B}{2} + \frac{C}{2}) - \frac{A}{2}$
\n $\Rightarrow \angle_{D} = 180^{\circ} - 90^{\circ} - \frac{A}{2} \quad \because \angle_{A} + \angle_{B} + \angle_{C} = 180^{\circ}$
\n $\Rightarrow \angle_{D} = 90^{\circ} - \frac{A}{2}$
\nSimilarly, we can prove that
\n $\angle E = 90^{\circ} - \frac{B}{2}$ and $\angle F = 90^{\circ} - \frac{C}{2}$

9, Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.

Ans. Given: Two equal circles intersect in A and B.

Ze
Ze

SARANGER

<u>Innanananananana</u>

A straight line through A meets the circles in P and Q.

To prove: BP = BQ

Construction: Join A and B.

Proof: AB is a common chord and the circles are equal.

Arc about the common chord are equal, i.e.

$\widehat{ACB} = \widehat{ADB}$

Since equal arcs of two equal circles subtend equal angles at any point on the remaining part of the circle, then we have,

$$
\angle_1 = \angle_2
$$

In triangle PBQ,

$$
\angle_1 = \angle_2
$$
 [proved]

 \mathbb{S}_2 . Sides opposite to equal angles of a triangle are equal.

Then we have, $BP = BQ$

3. In any triangle ABC, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, **prove that they intersect on the circum circle of the triangle ABC.**

Ans. Given: ABC is a triangle and a circle passes through its vertices.

Angle bisector of $\angle A$ and the perpendicular bisector (say \ket{l}) of its opposite side BC intersect each other at a point P.

To prove: Circum-circle of triangle ABC also passes through point P.

Proof: Since any point on the perpendicular bisector is equidistant from the end points of the corresponding

- $BP = PC$ (i)

KA KATANA KA

糸

side,

Also we have $\angle 1 = \angle 2$ [\therefore AP is the bisector of $\angle A$ (given)](ii)

From eq. (i) and (ii) we observe that equal line segments are subtending equal angles in the same segment i.e., at point A of circum-circle of Δ ABC. Therefore BP and PC acts as chords of

Circum-circle of Δ ABC and the corresponding congruent arcs \overline{BP} and \overline{PC} acts as parts of circum-circle. Hence point P lies on the circum-circle. In other words, points A, B, P and C are concyclic (proved).