

रु⊍ना International School

- income -							
Examination 2020 – 21							
Student Name		Grade 10 th	SET -1				
Date		Subject	MATHEMATICS				
	Time	Total Marks	80				

General Instructions:

- 1. This question paper contains two parts A and B.
- 2. Both Part A and Part B have internal choices.

Part – A:

- 1. It consists three sections- I and II.
- 2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
- 3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part – B:

- 1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
- 2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
- 3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Part-A

Section-I

Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.

1. If x y = 180 and HCF(x, y) = 3, then find the LCM (x, y).

OR

The decimal representation of $\frac{14587}{2^1 \times 5^4}$ will terminate after how many decimal places?

2. if the sum of the zeroes of the quadratic polynomial $3x^2-kx+6$ is 3, then find the value of k.

3. For what value of k, the pair of linear equations 3x + y = 3 and 6x + ky = 8 does not have a solution.

4. Find the distance of a point (x, y) from the origin.

5. Which term of the A.P. 27, 24, 21,.....is zero?

OR

In an Arithmetic Progression, if d = -4, n = 7, $a_n = 4$, then find a.

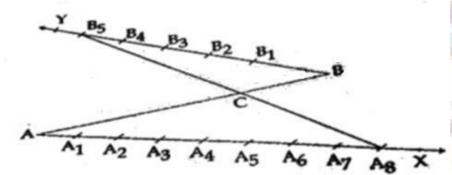
6. For what values of k, the equation $9x^2 + 6 k x + 4 = 0$ has equal roots?

7. Find the roots of the equation $x^2 + 7x + 10 = 0$

OR

For what value(s) of 'a' quadratic equation $30ax^2 - 6x + 1 = 0$ has no real roots?

8. if PQ=28cm, then find the perimeter of Δ PLM


9. If two tangents are inclined at 60° are drawn to a circle of radius 3cm then find length of each tangent.

OR

PQ is a tangent to a circle with centre O at point P. If $\triangle OPQ$ is an isosceles triangle, then find $\angle OQP$.

10. In the \triangle ABC, D and E are points on side AB and AC respectively such that DE II BC. If AE = 2cm, AD = 3cm and BD = 4.5cm, then find CE.

11. In the figure, if B1, B2, B3,..... and A1,A2, A3,.... have been marked at equal distances. In what ratio C divides AB?

12. Sin A + Cos B = 1, $A = 30^{\circ}$ and B is an acute angle, then find the value of B.

13. If $x = 2\sin^2\Theta$ and $y = 2\cos^2\Theta + 1$, then find x + y

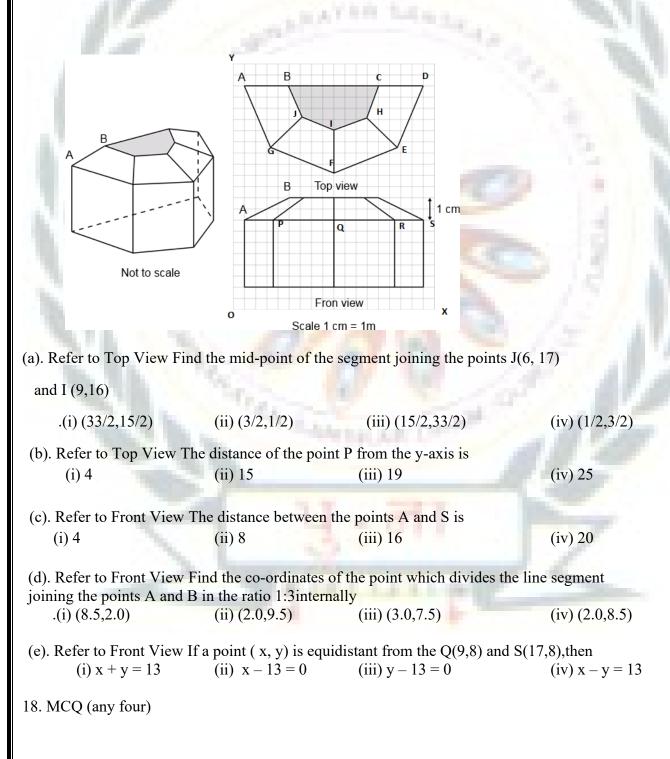
14 Prove that $\sqrt{2}$ is irrational number

15. 12 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2cm and height 16cm. Find the diameter of the each sphere.

16. Find the probability of getting a doublet in a throw of a pair of dice.

OR

Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards


Section-II

Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark

17. Case Study based-1 SUN ROOM

The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using

- Four clear glass panels, trapezium in shape, all the same size
- One tinted glass panel, half a regular octagon in shape

(A) 12 cm (B) 15cm b). The perimeters of two similar triang	(C) 10cm		
Of the first and second triangles is	gies are voem and soem	. Then, the fatto of the a	ieas
(A) 4:5 (B) 5:4	(C) 25:10	6 (D) 16:25	
c). How many tangents can be drawn to	• •		
(A) 1 (B) 2). How many tangents can a circle have	(C) 3	(D) none of these	
(A) Two (B) infinitely		(D) Zero	
). Which of the following is the correct	t HCF of the 108 and 28	38?	
(A) 108 (B) 12	(C) 288	(D) 36	
CL D L 2			
ise Study Based- 3			
	/TT 1		
	-	5	
oplications of Parabolas-Highway Ov highway underpass is parabolic in sh	-		
	-		
	-		
	-		
	-		
	-		
	-	B	
	-		
	-		
	-		
	-		
	-		
	hape.		
highway underpass is parabolic in sh	hape.	e graph that	
	hape.	e graph that a^2+bx+c	
highway underpass is parabolic in sh	hape.	e graph that $a_{j}=ax^{2}+bx+c$ remmetric	
highway underpass is parabolic in sh	hape.	e graph that $x)=ax^2+bx+c$ with the second seco	
highway underpass is parabolic in sh	hape.	e graph that $x)=ax^2+bx+c$ mmetric line known ymmetry.	
highway underpass is parabolic in sh	hape.	e graph that $x)=ax^2+bx+c$ winnetric line known <i>ymmetry</i> . mmetry runs	
highway underpass is parabolic in shore of Cross Slope: $x = \frac{x}{1 + 1 + 1}$	hape.	e graph that $x)=ax^2+bx+c$ winnetric line known <i>ymmetry</i> . mmetry runs	
highway underpass is parabolic in sh	hape.	e graph that $x)=ax^2+bx+c$ with the second seco	

Vertex

Time (in sec) 0 - 20 20 - 40 40 -- 60 60 - 80 80 - 100No .of 8 10 13 3 6 students (a) Estimate the mean time taken by a student to finish the race. (ii) 63 (i) 54 (iii) 43 (iv) 50 (b). What will be the upper limit of the modal class? (iii) 60 (i). 20 (ii). 40 (iv) 80 (c). The construction of cumulative frequency table is useful in determining the (i) Mean (ii) Median (iv) All of the above (iii) Mode (d). The sum of lower limits of median class and modal class is (iv) 140 (i) 60 (ii)100 (iii) 80 (e). How many students finished the race within 1 minute? (i) 18 (ii) 37 (iii) 31 (iv) 8 Part –B All questions are compulsory. In case of internal choices, attempt any one 21. Using Euclid's division algorithm, find the HCF of 405 and 2520 Using prime factorization, find the HCF and LCM of 36 and 84 22. 3 bells ring at an interval of 4, 7 and 14 minutes. All three bell rang at 6 am, when the three balls will the ring together next? 23. Find the point on x-axis which is equidistant from the points (2, -2) and (-4, 2)OR P (-2, 5) and Q (3, 2) are two points. Find the co-ordinates of the point R on PQ such that PR=2QR 24. Find a quadratic polynomial whose zeroes are $5-3\sqrt{2}$ and $5+3\sqrt{2}$. 25. Draw a line segment AB of length 9cm. With A and B as centers, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle. 26. A box contains 8 black beads and 12 white beads. Another box contains 9 black beads and 6 white beads. One bead from each box is taken. (a) What is the probability that both beads are black? (b) What is the probability of getting one black bead and one white bead?

27. Prove that $2-\sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.

28. If one root of the quadratic equation $3x^2+px+4 = 0$ is 2/3, then find the value of p and the other root of the equation.

The roots α and β of the quadratic equation $x^2-5x+3(k-1)=0$ are such that α - β =1. Find the value k.

29. If $\tan A=3/4$, find the value of $1/\sin A+1/\cos A$

If $\sqrt{3} \sin \Theta - \cos \Theta = 0$ and $0^{\circ} < \Theta < 90^{\circ}$, find the value of Θ

OR

OR

30. The perimeters of two similar triangles are 25cm and 15cm respectively. If one side of the first triangle is 9cm, find the length of the corresponding side of the second triangle.

In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3 BC. Prove that $9 AD^2 = 7 AB^2$

31. The median of the following data is 16. Find the missing frequencies a and b, if the total of the frequencies is 70.

Class 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40

Frequency 12 a 12 15 b 6 6 4

32. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower is 30° . Find the height of the tower.

33. The mode of the following data is 67. Find the missing frequency x.

Class	40-50	50-60	<u>60-70</u>	7 <mark>0-</mark> 80	80-90
Frequency	5	х	15	12	7

34. The two palm trees are of equal heights and are standing opposite each other on either side of the river, which is 80 m wide. From a point O between them on the river the angles of elevation of the top of the trees are 60° and 30°, respectively. Find the height of the trees and the distances of the point O from the trees.

OR

The angles of depression of the top and bottom of a building 50 meters high as observed from the top of a tower are 30° and 60° respectively. Find the height of the tower, and also the horizontal distance between the building and the tower.

35. Water is flowing through a cylindrical pipe of internal diameter 2cm, into a cylindrical tank of base radius 40 cm at the rate of 0.7m/sec. By how much will the water rise in the tank in half an hour?

36. The sum of the 4th and 8th terms of an AP is 24 and the sum of 6^{th} and 10^{th} terms is 44. Find the three terms of the AP