

पु•ेना International School

CLASS-8 CHAPTER - 9 **SUB-MATHS**

Algebraic Expressions and Identities (Ex. 9.1)

1. Identify the terms, their coefficients for each of the following expressions

- (1) $5xyz^2 3zy$
- (ii) $1 + x + x^2$

(iii)
$$4x^2y^2 - 4x^2y^2z^2 + z^2$$

- (iv) 3 pq + qr rp
- $\frac{(\mathbf{v})x}{2} + \frac{y}{2} xy$
- (vi) 0.3a 0.6ab + 0.5b

Ans. (i) Terms: $5xyz^2$ and -3zy

Coefficient in $5xyz^2$ is 5 and in -3zy is -3.

(ii) Terms: 1, x and x^2 . Coefficient of x and of x^2 is1.

(iii) Terms: $4x^2y^2$, $-4x^2y^2z^2$ and z^2 .

Coefficient in $4x^2y^2$ is 4, coefficient of $-4x^2y^2z^2$ is -4 and coefficient of z^2 is 1.

(iv) Terms: 3, -pq, qr and -rp

Coefficient of -pq is -1, coefficient of qr is 1 and coefficient of -rp is -1.

(v) Terms:
$$\frac{x}{2}, \frac{y}{2}$$
 and $\frac{xy}{2}$

Coefficient of $\frac{x}{2}$ is $\frac{1}{2}$, coefficient of $\frac{y}{2}$ is $\frac{1}{2}$ and coefficient of -xy is -1. (vi) Terms 0.3a, -0.6ab and 0.5b

Coefficient of 0.3a is 0.3, coefficient of -0.6ab is -0.6 and coefficient of 0.5b is 0.5.

2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories:

x + y, 1000, $x + x^{2} + x^{3} + x^{4}$, 7 + y + 5x, $2y - 3y^{2}$, $2y - 3y^{2} + 4y^{3}$, 5x - 4y + 3xy, $4z - 15z^{2}$, ab + bc + cd + da, pqr, $p^{2}q + pq^{2}$, 2p + 2q

Ans. (i) Since x + y contains two terms. Therefore it is binomial.

(ii) Since 1000 contains one terms. Therefore it is monomial.

(iii) Since $x + x^2 + x^3 + x^4$ contains four terms. Therefore it is a polynomial and it does not fit in above three categories.

(iv) Since 7 + y + 5x contains three terms. Therefore it is trinomial.

(v) Since $2y - 3y^2$ contains two terms. Therefore it is binomial.

(vi) Since $2y - 3y^2 + 4y^3$ contains three terms. Therefore it is trinomial.

(vii) Since 5x - 4y + 3xy contains three terms. Therefore it is trinomial.

(viii) Since $4z-15z^2$ contains two terms. Therefore it is binomial.

(ix) Since ab + bc + cd + da contains four terms. Therefore it is a polynomial and it does not fit in above three categories.

(x) Since Pq^{r} contains one terms. Therefore it is monomial.

(xi) Since $p^2q + pq^2$ contains two terms. Therefore it is binomial.

(di) Since

$$2p + 2q$$

3. Add the following:
(i) $ab - bc, bc - ca, ca - ab$
(ii) $a - b + ab, b - c + bc, c - a + ac$
(iii) $2p^2q^2 - 3pq + 4, 5 + 7pq - 3p^2q^2$
(iv) $l^2 + m^2, m^2 + n^2, n^2 + l^2 + 2lm + 2mn + 2nl$
Ans. (i) $ab - bc, bc - ca, ca - ab$
 $ab - bc$
 $+ bc - ca$
 $-ab + ca$
 $0 + 0 + 0$
(ii) $a - b + ab, b - c + bc, c - a + ac$
 $a - b - ab$
 $+ bc$
 $-a + c + ac$
 $0 + 0 + ab + 0 + bc + ac$.
Hence the sum if 0.
Hence the sum is $ab + bc + ac$.
(ii) $2p^2q^2 - 3pq + 4, 5 + 7pq - 3p^2q^2$
 $2p^2q^2 - 3pq + 4, 5 + 7pq - 3p^2q^2$
 $2p^2q^2 - 3pq + 4$

(iv)

$$l^{2} + m^{2}, m^{2} + n^{2}, n^{2} + l^{2}, 2lm + 2mn + 2nl$$

 $l^{2} + m^{2}$
 $+ m^{2} + n^{2}$
 $+ l^{2} + n^{2}$
 $+ 2lm + 2mn + 2nl$
 $2l^{2} + 2m^{2} + 2n^{2} + 2lm + 2mn + 2nl$

Hence the sum is

$$2\left(l^2 + m^2 + n^2 + lm + mn + nl\right)$$

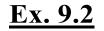
4. (a) Subtract
$$4a - 7ab + 3b + 12$$
 from $12a - 9ab + 5b - 3$.
(b) Subtract $3xy + 5yz - 7zx$ from $5xy - 2yz - 2zx + 10xyz$.
(c) Subtract $4p^2q - 3pq + 5pq^2 - 8p + 7q - 10$ from
 $18 - 3p - 11q + 5pq - 2pq^2 + 5p^2q$.

Ans. (a)

$$\begin{array}{r}
12a - 9ab + 5b - 3 \\
4a - 7ab + 3b + 12 \\
(-) (+) (-)(-) \\
\hline
8a - 2ab + 2b - 15
\end{array}$$

(b)

$$5xy - 2yz - 2zx + 10xyz$$


$$3xy + 5yz - 7zx$$

(-) (-) (+)

$$2xy - 7yz + 5zx + 10xyz$$

(c)

$$5p^{2}q - 2pq^{2} + 5pq - 11q - 3p + 18$$

$$4p^{2}q + 5pq^{2} - 3pq + 7q - 8p - 10$$
(-)
(-)
(+)
(-)
(+)
(+)
(+)
$$p^{2}q - 7pq^{2} + 8pq - 18q + 5p + 28$$

4,7p (i) (ii) -4p, 7p(iii) -4*p*,7*pq* (iv) $4p^3, -3p$ (iv) 4*p*,0 Ans. (i) $4 \times 7p = 4 \times 7 \times p = 28p$ (ii) $-4p \times 7p = (-4 \times 7) \times (p \times p)$ $= -28 p^{2}$ (iii) $-4p \times 7pq = (-4 \times 7)(p \times pq)$ $= -28 p^2 q$ (iv) $4p^3 \times -3p = (4 \times -3)(p^3 \times p)$ $= -12p^4$ (v) $4p \times 0 = (4 \times 0)(p) = 0$

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively:

$$(p,q); (10m,5n); (20x^2,5y^2); (4x,3x^2); (3mn,4np)$$

Ans.

- (i) Area of rectangle
- = length×breadth
- = $p \times q = pq_{\text{sq. units}}$
- (ii) Area of rectangle
- = length×breadth
- $= 10m \times 5n = (10 \times 5)(m \times n)$
- = 50mn sq. units
- (iii) Area of rectangle = $length \times breadth$
- $= 20x^2 \times 5y^2 = (20 \times 5)(x^2 \times y^2)$
- = $100x^2y^2$ sq. units
- (iv) Area of rectangle = length × breadth

$$=4x\times 3x^2 = (4\times 3)(x\times x^2)$$

= $12x^3$ sq. units

- (v) Area of rectangle = $length \times breadth$
- $= 3mn \times 4np = (3 \times 4)(mn \times np)$

 $= 12mn^2 p_{sq. units}$

3. Complete the table of products:

(i)									
First monomial → Second monomial ↓	2x	-5y	3 <i>x</i> ²		-4xy	7 <i>x</i> ² ;	v	-9x	² y ²
2x	$4x^2$								
-5 <i>y</i>			-152	$c^2 y$					
$3x^2$									
-4xy							8		-
$7x^2y$				3					
$-9x^2y^2$							20 20		8
Ans. (i)	20	14	10						
$\begin{array}{c} \text{First} \\ \text{monomial} \\ \longrightarrow \\ \text{Second} \\ \text{monomial} \\ \downarrow \end{array}$	2:	¢	-5 <i>y</i>	3x ²		-4 <i>x</i> y	7 <i>x</i> ²	у	$-9x^2y^2$
2x	4:	x ²	-10xy	$6x^3$		$-8x^2y$	14x	³ y	$-18x^{3}y^{2}$
-5 <i>y</i>	-	10 <i>xy</i>	$25y^2$	-15x	$r^2 y = 2$	$20xy^2$	-35	$5x^2y^2$	$45x^2y^3$
$3x^2$	6:	x ³	$-15x^2y$	$9x^4$		$-12x^3y$	-		$-27x^4y^2$
-4 <i>xy</i>	80	$c^2 y$	$20xy^2$	-12x	10 0	$6x^2y^2$	25	$3x^3y^2$	15101
$7x^2y$	14	$4x^3y$	$-35x^2y^2$	$21x^4$	y -	$-28x^3y^2$	49 <i>x</i>	x^4y^2	$-63x^4y^3$
$-9x^2y^2$		$18x^3y^2$	$45x^2y^3$	-27 x	$c^4 v^2$ 3	$36x^3y^3$	-63	x^4y^3	$81x^4y^4$

4. Obtain the volume of rectangular boxes with the following length, breadth and height respectively:

(i) $5a, 3a^27a^4$

(ii)2 *p*, 4*q*,8*r* (iii) *xy*, 2*x*²*y*, 2*xy*²

(iv)a, 2b, 3c

Ans. (i) Volume of rectangular box
=
$$length \times breadth \times height$$

= $5a \times 3a^2 \times 7a^4 = (5 \times 3 \times 7)(a \times a^2 \times a^4)$
= $105a^7$ cubic units
(ii) Volume of rectangular box
= $length \times breadth \times height$
= $2p \times 4q \times 8r = (2 \times 4 \times 8)(p \times q \times r)$
= $64pqr$ cubic units
(iii) Volume of rectangular box
= $length \times breadth \times height$
= $xy \times 2x^2y \times 2xy^2$
= $(1 \times 2 \times 2)(x \times x^2 \times x \times y \times y \times y^2)$
= $4x^4y^4$ cubic units
(iv) Volume of rectangular box
= $length \times breadth \times height$
= $a \times 2b \times 3c = (1 \times 2 \times 3)(a \times b \times c)$
= $6abc$ cubic units
(i) xy, yz, zx

(ii)
$$a_{x} - a^{2}, a^{3}$$

(iii) $2, 4y, 8y^{2}, 16y^{3}$
(iv) $a_{x}, 2b, 3c, 6abc$
(v) $m, -mn, mnp$
Ans.
(i) $xy \times yz \times zx = x \times x \times y \times y \times z \times z$
 $= x^{2}y^{2}z^{2}$
(ii) $a \times (-a^{2}) \times a^{3} = (-1)(a \times a^{2} \times a^{3})$
 $= -a^{5}$
(iii) $2 \times 4y \times 8y^{2} \times 16y^{3}$
 $= (2 \times 4 \times 8 \times 16)(y \times y^{2} \times y^{3})$
 $= 1024y^{5}$
(iv) $a \times 2b \times 3c \times 6abc$
 $= (1 \times 2 \times 3 \times 6)(a \times b \times c \times abc)$
 $= 36a^{2}b^{2}c^{2}$
(v) $m \times -mn \times mnp = (-1)(m \times m \times m \times n \times n \times n)$
 $= -m^{3}n^{2}p$

<u>Ex. 9.3</u>

1. Carry out the multiplication of the expressions in each of the following pairs: (i) 4p, q+r (ii) ab, a-b (iii) $a+b, 7a^2b^2$ (iv) $a^2 - 9,4a$ (v) pq + qr + rp, 0 Ans. (i) $4p \times (q+r) = 4p \times q + 4p \times r$ =4pq+4pr(ii) $ab \times (a-b) = ab \times a - ab \times b$ $= a^2b - ab^2$ (iii) $(a+b) \times 7a^2b^2 = a \times 7a^2b^2 + b \times 7a^2b^2 = 7a^3b^2 + 7a^2b^3$ (iv) $(a^2 - 9) \times 4a = a^2 \times 4a - 4a \times 9 = 4a^3 - 36a$ (v) $(pq+qr+rp) \times 0 = pq \times 0 + qr \times 0 + rp \times 0$ = 0 + 0 + 0 = 02. Complete the table:

First expression	Second expression	Product	25

(i)	a	b+c+d	
(ii)	x+y-5	5xy	
(iii)	р	$6p^2 - 7p + 5$	
(iv)	$4p^2q^2$	p^2-q^2	
(v)	a+b+c	abc	
ANS:	15	and a start of the	No. of Lot of Lo

	First expression	Second expression	Product
(i)	а	b+c+d	a(b+c+d) = $a \times b + a \times c + a \times d$ = $ab + ac + ad$
(ii)	x+y-5	5 xy	5xy(x+y-5) = $5xy \times x + 5xy \times y - 5xy \times 5$ = $5x^2y + 5xy^2 - 25xy$
(iii)	р	$6p^2 - 7p + 5$	$p(6p^{2}-7p+5)$ = $p \times 6p^{2} - p \times 7p + p \times 5$ = $6p^{3} - 7p^{2} + 5p$
(iv)	$4p^2q^2$	p^2-q^2	$4p^{2}q^{2}(p^{2}-q^{2})$ = $4p^{2}q^{2} \times p^{2} - 4p^{2}q^{2} \times q^{2}$ = $4p^{4}q^{2} - 4p^{2}q^{4}$
(v)	a+b+c	abc	abc(a+b+c) = $abc \times a + abc \times b + abc \times c$ = $a^{2}bc + ab^{2}c + abc^{2}$

3. Find the product: (i) $(a^2) \times (2a^{22}) \times (4a^{26})$ (ii) $\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$ (iii) $\left(\frac{-10}{3}pq^3\right) \times \left(\frac{6}{5}p^3q\right)$ (iv) $x \times x^2 \times x^3 \times x^4$ Ans. (i) $(a^2) \times (2a^{22}) \times (4a^{26})$ $= (2 \times 4) (a^2 \times a^{22} \times a^{26})$ $= 8 \times a^{2+22+26} = 8a^{50}$ (ii) $\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$ $= \left(\frac{2}{3} \times \frac{-9}{10}\right) \left(x \times x^2 \times y \times y^2\right)$ $=\frac{-3}{5}x^{3}y^{3}$ (iii) $\left(\frac{-10}{3}pq^3\right)\left(\frac{6}{5}p^3q\right)$ $= \left(\frac{-10}{3} \times \frac{6}{5}\right) \left(p \times p^3 \times q^3 \times q\right)$ $= -4p^4q^4$

(iv)
$$x \times x^{2} \times x^{3} \times x^{4} = x^{1+2+3+4} = x^{10}$$

4. (a)Simplify: $3x(4x-5) + 3$ and find values for
(i) $x = 3$
(ii) $x = \frac{1}{2}$
(b)Simplify: $a(a^{2} + a + 1) + 5$ and find its value for
(i) $a = 0$
(ii) $a = 1$
(iii) $a = -1$.
Ans (a) $3x(4x-5) + 3$
 $= 3x \times 4x - 3x \times 5 + 3$
 $= 12x^{2} - 15x + 3$
(i) For $x = 3$, $12x^{2} + 15x + 3$
 $= 12(3)^{2} - 15 \times 3 + 3$
 $= 12 \times 9 - 45 + 3 = 108 - 45 + 3 = 66$
(ii) For $x = \frac{1}{2}$, $12x^{2} - 15x + 3$
 $= 12(\frac{1}{2})^{2} - 15 \times \frac{1}{2} + 3$

$$= 12 \times \frac{1}{4} - \frac{15}{2} + 3$$

$$= 6 - \frac{15}{2} = \frac{12 - 15}{2} = \frac{-3}{2}$$
(b) $a(a^{2} + a + 1) + 5$

$$= a \times a^{2} + a \times a + a \times 1 + 5$$

$$= a^{3} + a^{2} + a + 5$$
(i) For $a = 0$, $a^{3} + a^{2} + a + 5$
(j) For $a = 0$, $a^{3} + a^{2} + a + 5$

$$= (0)^{3} + (0)^{2} + (0) + 5$$

$$= 0 + 0 + 0 + 5 = 5$$
(ii) For $a = 1$, $a^{3} + a^{2} + a + 5$

$$= (1)^{3} + (1)^{2} + (1) + 5$$

$$= 1 + 1 + 1 + 5 = 8$$
(iii) For $a = -1$, $a^{3} + a^{2} + a + 5$

$$= (-1)^{3} + (-1)^{2} + (-1) + 5$$

$$= -1 + 1 - 1 + 5 = -2 + 6 = 4$$
5. (a) Add: $p(p - q)$, $q(q - r)$ and $r(r - p)$.
(b) Add: $2x(z - x - y)$ and $2y(z - y - zx)$.

(c) Subtract:
$$3l(l-4m+5n)$$
 from $4l(10n-3m+2l)$.
(d) Subtract: $3a(a+b+c)-2b(a-b+c)$ from $4c(-a+b+c)$.
Ans. (a) $p(p-q)+q(q-r)+r(r-p)$
 $= p^2-pq+q^2-qr+r^2-rp$
 $p^2+q^2+r^2-pq-qr-rp$
(b) $2x(z-x-y)+2y(z-y-x)$
 $= 2xz-2x^2-2xy+2yz-2y^2-2xy$
 $= 2xz-2xy-2xy+2yz-2x^2-2y^2$
 $= -2x^2-2y^2-4xy+2yz+2zx$
(c) $4l(10n-3m+2l)-3l(l-4m+5n)$
 $= 40ln-12lm+8l^2-3l^2+12lm-15ln$
 $= 8l^2-3l^2-12lm+12lm+40ln-15ln$
 $= 5l^2+25ln$
(a) $4c(-a+b+c)-[3a(a+b+c)-2b(a-b+c)]$
 $= -4ac+4bc+4c^2-[3a^2+3ab+3ac-2ab+2b^2-2bc]$
 $= -4ac+4bc+4c^2-[3a^2+2b^2+3ab-2bc+3ac-2ab]$

 $= -4ac + 4bc + 4c^{2} - \left[3a^{2} + 2b^{2} + ab + 3ac - 2bc\right]$ $= -4ac + 4bc + 4c^2 - 3a^2 - 2b^2 - ab - 3ac + 2bc$ $= -3a^2 - 2b^2 + 4c^2 - ab + 4bc + 2bc - 4ac - 3ac$ $= -3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$

Ex. 9.4

1. Multiply the binomials: (i) (2x+5) and (4x-3) (ii) (y-8) and (3y-4)(iii) (2.5l - 0.5m) and (2.5l + 0.5m)(iv) (a+3b) and (x+5)(v) $\left(2pq+3q^2\right)$ and $\left(3pq-2q^2\right)$ (vi) $\left(\frac{3}{4}a^2 + 3b^2\right)$ and $4\left(a^2 - \frac{2}{3}b^2\right)$ Ans. (i) $(2x+5) \times (4x-3)$ =2x(4x-3)+5(4x-3) $= 2x \times 4x - 2x \times 3 + 5 \times 4x - 5 \times 3$ $= 8x^2 - 6x + 20x - 15$ $= 8x^{2} + 14x - 15$ (ii) $(y-8) \times (3y-4) = y(3y-4) - 8(3y-4)$ $= y \times 3y - y \times 4 - 8 \times 3y - 8 \times -4$ $= 3y^2 - 4y - 24y + 32$ $=3y^2 - 28y + 32$

(iii)
$$(2.5l-0.5m) \times (2.5l+0.5m)$$

= $2.5l \times (2.5l+0.5m) - 0.5m \times (2.5l+0.5m)$
= $2.5l \times 2.5l + 2.5l \times 0.5m - 0.5m \times 2.5l - 0.5m \times 0.5m$
= $6.25l^2 + 1.25lm - 1.25lm - 0.25m^2$
= $6.25l^2 - 0.25m^2$
(iv) $(a+3b) \times (x+5) = a(x+5) + 3b(x+5)$
= $a \times x + a \times 5 + 3b \times x + 3b \times 5$
= $ax + 5a + 3bx + 15b$
(v) $(2pq+3q^2)(3pq-2q^2)$
= $2pq \times (3pq-2q^2) + 3q^2 (3pq-2q^2)$
= $2pq \times (3pq-2q^2) + 3q^2 (3pq-2q^2)$
= $6p^2q^2 + 4pq^3 + 9pq^3 - 6q^4$
= $6p^2q^2 + 5pq^3 - 6q^4$
(vi) $(\frac{3}{4}a^2 + 3b^2) \times 4(a^2 - \frac{2}{3}b^2)$
= $(\frac{3}{4}a^2 + 3b^2) \times (4a^2 - \frac{8}{3}b^2)$
= $\frac{3}{4}a^2 \times (4a^2 - \frac{8}{3}b^2) + 3b^2 \times (4a^2 - \frac{8}{3}b^2)$

$$= \frac{3}{4}a^{2} \times 4a^{2} - \frac{3}{4}a^{2} \times \frac{8}{3}b^{2} + 3b^{2} \times 4a^{2} - 3b^{2} \times \frac{8}{3}b^{2}$$

$$= 3a^{4} - 2a^{2}b^{2} + 12a^{2}b^{2} - 8b^{4}$$

$$= 3a^{4} + 10a^{2}b^{2} - 8b^{4}$$
2. Find the product:
(i) $(5 - 2x)(3 + x)$
(ii) $(x + 7y)(7x - y)$
(iii) $(a^{2} + b)(a + b^{2})$
(iv) $(p^{2} - q^{2})(2p + q)$ Ans.(i)
 $(5 - 2x)(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= 5 \times (3 + x) - 2x(3 + x)$
 $= x(7x - y) + 7y \times (7x - y)$
 $= x(7x - y) + 7y \times (7x - y)$
 $= x(7x - x) + 49xy - 7y^{2}$
(ii) $(a^{2} + b)(a + b^{2})$

$$= a^{2} \times (a+b^{2}) + b \times (a+b^{2})$$

$$= a^{2} \times a + a^{2} \times b^{2} + b \times a + b \times b^{2}$$

$$= a^{3} + a^{2}b^{2} + ab + b^{3}$$
(iv) $(p^{2} - q^{2})(2p+q)$

$$= p^{2} \times (2p+q) - q^{2}(2p+q)$$

$$= p^{2} \times (2p+q) - q^{2}(2p+q)$$

$$= 2p^{3} + p^{2}q - 2pq^{2} - q^{3}$$
3. Simplify:
(i) $(x^{2} - 5)(x+5) + 25$
(ii) $(a^{2} + 5)(b^{2} + 3) + 5$
(iii) $(t+s^{2})(t^{2} - s)$
(iv) $(a+b)(c-d) + (a-b)(c+d) + 2(ac+bd)$
(v) $(x+y)(2x+y) + (x+2y)(x-y)$
(vi) $(x+y)(x^{2} - xy + y^{2})$
(vii) $(1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y$
(viii) $(a+b+c)(a+b-c)$

Ans. (i)
$$(x^2-5)(x+5)+25$$

 $= x^2(x+5)-5(x+5)+25$
 $= x^2 \times x + x^2 \times 5 - 5 \times x - 5 \times 5 + 25$
 $= x^3 + 5x^2 - 5x - 25 + 25$
 $= x^3 + 5x^2 - 5x$
(ii) $(a^2+5)(b^3+3)+5$
 $= a^2(b^3+3)+5(b^3+3)+5$
 $= a^2b^3+a^2+5b^3+15+5$
 $= a^2b^3+3a^2+5b^3+15+5$
 $= a^2b^3+3a^2+5b^3+20$
(iii) $(t+s^2)(t^2-s)=t(t^2-s)+s^2(t^2-s)$
 $= t \times t^2 - t \times s + s^2 \times t^2 - s^2 \times s$
 $= t^3 - st + s^2t^2 - s^3$
(iv($a+b$)($c-d$)+($a-b$)($c+d$)+2($ac+bd$)
 $= a(c-d)+b(c-d)+a(c+d)-b(c+d)+2ac+2bd$
 $= ac - ad + bc - bd + ac + ad - bc - bd + 2ac + 2bd$
 $= ac + ac - ad + ad + bc - bc - bd - bd + 2ac + 2bd$

$$= 2ac - 2bd + 2ac + 2bd$$

$$= 4ac$$

$$(v(x+y)(2x+y) + (x+2y)(x-y)$$

$$= x(2x+y) + y(2x+y) + x(x-y) + 2y(x-y)$$

$$= 2x^{2} + xy + 2xy + y^{2} + x^{2} - xy + 2xy - 2y^{2}$$

$$= 2x^{2} + x^{2} + xy + 2xy - xy + 2xy + y^{2} + 2y^{2}$$

$$= 3x^{2} + 4xy - y^{2}$$

$$(v_{1})(x+y)(x^{2} - xy + y^{2})$$

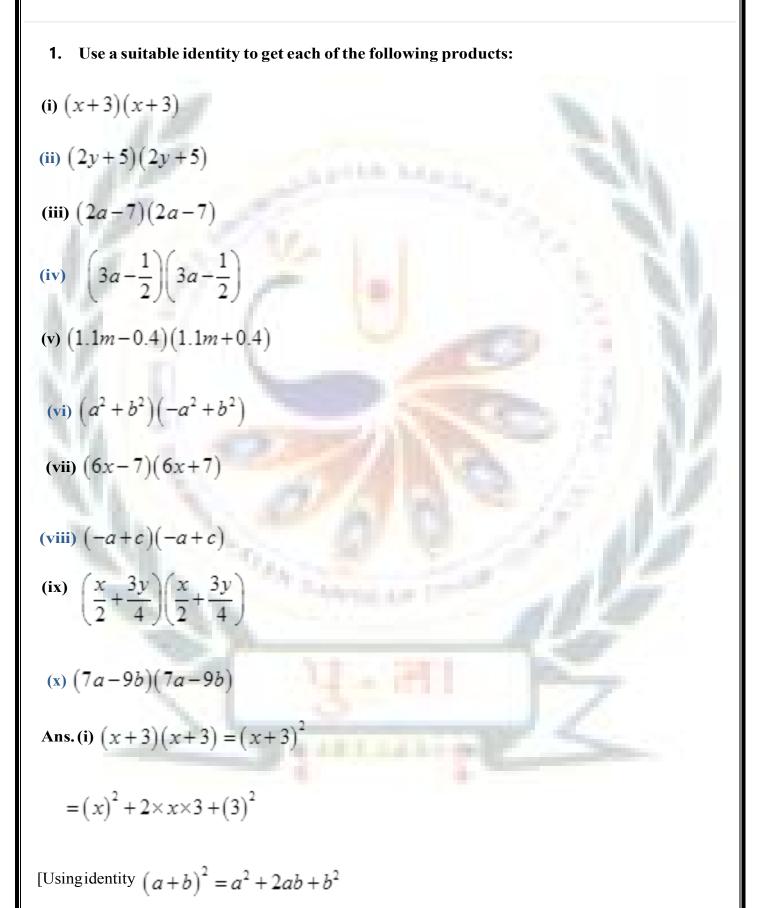
$$= x(x^{2} - xy + y^{2}) + y(x^{2} - xy + y^{2})$$

$$= x^{3} - x^{2}y + xy^{2} + x^{2}y - xy^{2} + y^{3}$$

$$= x^{3} - x^{2}y + xy^{2} + x^{2}y - xy^{2} + y^{3}$$

$$= x^{3} + y^{3}$$

$$(v_{1})(1.5x + 4y + 3) - 4.5x + 12y$$


$$= 1.5x(1.5x + 4y + 3) - 4y(1.5x + 4y + 3) - 4.5x + 12y$$

$$= 2.25x^{2} + 6.0xy + 4.5x - 6.0xy - 16y^{2} - 12y - 4.5x + 12y$$

$$= 2.25x^{2} + 6.0xy - 6.0xy + 4.5x - 4.5x - 16y^{2} - 12y + 12y$$

 $= 2.25x^2 - 16y^2$ (viii)(a+b+c)(a+b-c)= a(a+b-c)+b(a+b-c)+c(a+b-c) $= a^{2} + ab - ac + ab + b^{2} - bc + ac + bc - c^{2}$ $= a^{2} + ab + ab - ac + ac - bc + bc + b^{2} - c^{2}$ $= a^2 + b^2 - c^2 + 2ab$

<u>Ex. 9.5</u>

$$= x^{2} + 6x + 9$$
(ii) $(2y + 5)(2y + 5) = (2y + 5)^{2}$

$$= (2y)^{2} + 2 \times 2y \times 5 + (5)^{2}$$
(Using identity $(a + b)^{2} = a^{2} + 2ab + b^{2} + 1$

$$= +y^{2} + 20y + 25$$
(iii) $(2a - 7)(2a - 7) = (2a - 7)^{2}$

$$= (2a)^{2} - 2 \times 2a \times 7 + (7)^{2}$$
(Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2} + 1$

$$= 4a^{2} - 28a + 49$$
(iv) $(3a - \frac{1}{2})(3a - \frac{1}{2}) = (3a - \frac{1}{2})^{2}$

$$= (3a)^{2} - 2 \times 3a \times \frac{1}{2} + (\frac{1}{2})^{2}$$
(Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2}$

$$= 9a^{2} - 3a + \frac{1}{4}$$
(v) $(1.1m - 0.4)(1.1m + 0.4) = (1.1m)^{2} - (0.4)^{2}$
[Using identity $(a - b)(a + b) = a^{2} - b^{2} + 1$

$$= 1.21m^{2} - 0.16$$

(vi)
$$(a^{2} + b^{2})(-a^{2} + b^{2}) = (b^{2} + a^{2})(b^{2} - a^{2})$$

 $= (b^{2})^{2} - (a^{2})^{2}$
[Using identity $(a - b)(a + b) = a^{2} - b^{2}$
 $= b^{4} - a^{4}$
(vii) $(6x - 7)(6x + 7) = (6x)^{2} - (7)^{2}$
[Using identity $(a - b)(a + b) = a^{2} - b^{2}$]
 $= 36x^{2} - 49$
(viii) $(-a + c)(-a + c)$
 $(c - a)(c - a) = (c - a)^{2}$
 $= (c)^{2} - 2 \times c \times a + (a)^{2}$
[Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2}$]
 $= c^{2} - 2ca + a^{2}$
(is) $\left(\frac{x}{2} + \frac{3y}{4}\right)\left(\frac{x}{2} + \frac{3y}{4}\right) = \left(\frac{x}{2} + \frac{3y}{4}\right)^{2}$
 $= \left(\frac{x}{2}\right)^{2} + 2 \times \frac{x}{2} \times \frac{3y}{4} + \left(\frac{3y}{4}\right)^{2}$
[Using identity $(a + b)^{2} = a^{2} + 2ab + b^{2}$]
 $= \frac{x^{2}}{4} + \frac{3}{4}xy + \frac{9}{16}y^{2}$

(s)
$$(7a-9b)(7a-9b) = (7a-9b)^{2}$$

= $(7a)^{2} - 2 \times 7a \times 9b + (9b)^{2}$
[Using identity $(a-b)^{2} = a^{2} - 2ab + b^{2} = 1$
= $49a^{2} - 126ab + 81b^{2}$
2. Use the identity $(x+a)(x+b) = x^{2} + (a+b)x + ab$ to find the following products:
(a) $(x+3)(x+7)$
(ii) $(4x+5)(4x-1)$
(iii) $(4x-5)(4x-1)$
(iv) $(2x+5y)(2x+3y)$
(vi) $(2a^{2}+9)(2a^{2}+5)$
(vii) $(xyz-4)(xyz-2)$
Ans.(i) $(x+3)(x+7)$
= $(x)^{2} + (3+7)x + 3 \times 7$
[Using identity $(x+a)(x+b) = x^{2} + (a+b)x + ab$]
= $x^{2} + 10x + 21$
(ii) $(4x+5)(4x+1)$
= $(4x)^{2} + (5+1)4x + 5 \times 1$

$$[Using identity(x+a)(x+b) = x^{2} + (a+b)x+ab]$$

$$= 16x^{2} + 6 \times 4x + 5 = 16x^{2} + 24x + 5$$
(ii) $(4x-5)(4x-1)$

$$= (4x)^{2} + (-5-1)4x + (-5) \times (-1)$$
[Using identity $(x+a)(x+b) = x^{2} + (a+b)x+ab$]
$$= 16x^{2} + (-6) \times 4x + 5 = 16x^{2} - 24x + 5$$
(iv) $(4x+5)(4x-1)$

$$= (4x)^{2} + (5-1) \times 4x - 5$$

$$= 16x^{2} + (5-1) \times 4x - 5$$

$$= 16x^{2} + 4 \times 4x - 5$$

$$= 16x^{2} + 16x - 5$$
(v) $(2x+5y)(2x+3y)$

$$= (2x)^{2} + (5y+3y) \times 2x + 5y \times 3y$$
[Using identity $(x+a)(x+b) = x^{2} + (a+b)x+ab$]
$$= 4x^{2} + 8y \times 2x + 15y^{2}$$

$$= 4x^{2} + 16xy + 15y^{2}$$

(vi)
$$(2a^{2}+9)(2a^{2}+5)$$

 $=(2a^{2})^{2}+(9+5)\times 2a^{2}+9\times 5$
[Using identity $(x+a)(x+b) = x^{2}+(a+b)x+ab$
 $=4a^{4}+14\times 2a^{2}+45$
 $=4a^{4}+28a^{2}+45$
(vii) $(xyz-4)(xyz-2)$
 $=(xyz)^{2}+(-4-2)\times xyz+(-4)\times(-2)$
[Using identity $(x+a)(x+b) = x^{2}+(a+b)x+ab$]
 $=x^{2}y^{2}z^{2}-6xyz+8$
3. Find the following squares by using identities:
(i) $(b-7)^{2}$
(ii) $(xy+3z)^{2}$
(iii) $(6x^{2}-5y)^{2}$
(iv) $(\frac{2}{3}m+\frac{3}{2}n)^{2}$
(v) $(0.4p-0.5q)^{2}$
(vi) $(2xy+5y)^{2}$

Ans.(i)
$$(b-7)^2 = (b)^2 - 2 \times b \times 7 + (7)^2$$

[Using identity $(a-b)^2 = a^2 - 2ab + b^2$
 $= b^2 - 14b + 49$
(ii) $(xy + 3z)^2 = (xy)^2 + 2 \times xy \times 3z + (3z)^2$
[Using identity $(a+b)^2 = a^2 + 2ab + b^2$
 $= x^2y^2 + 6xyz + 9z^2$
(iii) $(6x^2 - 5y)^2$
 $= (6x^2)^2 - 2 \times 6x^2 \times 5y + (5y)^2$
[Using identity $(a-b)^2 = a^2 - 2ab + b^2$
 $- 36x^4 - 60x^2y + 25y^2$
(iv) $(\frac{2}{3}m + \frac{3}{2}n)^2$
 $= (\frac{2}{3}m)^2 + 2 \times \frac{2}{3}m \times \frac{3}{2}n + (\frac{3}{2}n)^2$
[Using identity $(a+b)^2 = a^2 + 2ab + b^2$]
 $= \frac{4}{9}m^2 + 2mn + \frac{9}{4}n^2$
(v) $(0.4p - 0.5q)^2$

$$= (0.4p)^{2} - 2 \times 0.4p \times 0.5q + (0.5q)^{2}$$
[Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2}$

$$= 0.16p^{2} - 0.40pq + 0.25q^{2}$$
(iv) $(2xy + 5y)^{2}$

$$= (2xy)^{2} + 2 \times 2xy \times 5y + (5y)^{2}$$
[Using identity $(a + b)^{2} = a^{2} + 2ab + b^{2}$]
 $-4x^{2}y^{2} + 20xy^{2} + 25y^{2}$
4. Simplify:
(i) $(a^{2} - b^{2})^{2}$
(ii) $(2x + 5)^{2} - (2x - 5)^{2}$
(iii) $(7m - 8n)^{2} + (7m + 8n)^{2}$
(iv) $(4m + 5n)^{2} + (5m + 4n)^{2}$
(v) $(2.5p - 1.5q)^{2} - (1.5p - 2.5q)^{2}$
(vi) $(ab + bc)^{2} - 2ab^{2}c$
(vii) $(m^{2} - n^{2}m)^{2} + 2m^{2}n^{2}$
Ans.(i) $(a^{2} - b^{2})^{2}$

$$= (a^{2})^{2} - 2 \times a^{2} \times b^{2} + (b^{2})^{2}$$
[Using identity $(a - b)^{2} = a^{2} - 2ab + b^{2}$

$$= a^{4} - 2a^{2}b^{2} + b^{4}$$
(ii) $(2x + 5)^{2} - (2x - 5)^{2}$

$$= ((2x + 5) + (2x - 5)) ((2x + 5) - (2x - 5))$$
[Using identity $(a^{2} - b^{2}) = (a + b) (a - b)$]
$$= (4x) (2x + 5 - 2x + 5)$$

$$= (4x) (10)$$

$$= 40 x$$
(iii) $(7m - 8n)^{2} + (7m + 8n)^{2}$

$$= (7m)^{2} - 2 \times 7m \times 8n + (8n)^{2} + [(7m)^{2} + 2 \times 7m \times 8n + (8n)^{2}]$$
[Using identities $(a + b)^{2} = a^{2} + 2ab + b^{2}$ and $(a - b)^{2} = a^{2} - 2ab + b^{2}$]
$$= 49m^{2} - 112mn + 64n^{2} + [49m^{2} + 112mn + 64n^{2}]$$

$$= 98m^{2} + 128n^{2}$$
(iv) $(4m + 5n)^{2} + (5m + 4n)^{2}$

$$= (4m)^{2} + 2 \times 4m \times 5n + (5n)^{2} + (5m)^{2} + 2 \times 5m \times 4n + (4n)^{2}$$
[Using identity $(a + b)^{2} = a^{2} + 2ab + b^{2}$]
$$= 16m^{2} + 40mn + 25n^{2} + 25m^{2} + 40mn + 16n^{2}$$

$$\frac{16m^{2} + 15m^{2} + 40mn + 40mn + 15n^{2} + 16n^{2}}{(1000)^{2} + 280mn + 41n^{2}}$$

$$= 41m^{2} + 80mn + 41n^{2}$$

$$(v)(2.5p - 1.5q)^{2} - (1.5p - 2.5q)^{2}$$

$$= (2.5p)^{2} - 2 \times 2.5p \times 1.5q + (1.5q)^{2} - [(1.5p)^{2} - 2 \times 1.5p \times 2.5q + (2.5q)^{2}]$$

$$= (2.5p)^{2} - 2 \times 2.5p \times 1.5q + (1.5q)^{2} - [(1.5p)^{2} - 2 \times 1.5p \times 2.5q + (2.5q)^{2}]$$

$$= (2.5p^{2} - 7.50pq + 2.25q^{2} - [2.25p^{2} - 7.50pq + 6.25q^{2}]$$

$$= 6.25p^{2} - 7.50pq + 2.25q^{2} - [2.25p^{2} - 7.50pq - 6.25q^{2}]$$

$$= 4p^{2} - 4q^{2}$$

$$(vi)(ab + bc)^{2} - 2ab^{2}c = (ab)^{2} + 2 \times ab \times bc + (bc)^{2} - 2ab^{2}c$$

$$[Using identity (a + b)^{2} = a^{2} + 2ab + b^{2} - 1]$$

$$= a^{2}b^{2} + 2ab^{2}c + b^{2}c^{2} - 2ab^{2}c$$

$$= a^{2}b^{2} + b^{2}c^{2}$$

$$(vii)(m^{2} - n^{2}m)^{2} + 2m^{3}n^{2}$$

$$= (m^{2})^{2} - 2 \times m^{2} \times n^{2}m + (n^{2}m)^{2} + 2m^{3}n^{2}$$

$$[Using identity (a - b)^{2} = a^{2} - 2ab + b^{2}]$$

$$= m^{4} - 2m^{3}n^{2} + n^{4}m^{2} + 2m^{3}n^{2}$$

$$= m^{4} + n^{4}m^{2}$$

5. Show that:

(i)
$$(3x+7)^2 - 84x = (3x-7)^2$$

(ii) $(9p-5q)^2 + 180 pq = (9p+5q)^2$
(iii) $\left(\frac{4}{3}m - \frac{3}{4}n\right)^2 + 2mn = \frac{16}{9}m^2 + \frac{9}{16}n^2$
(iv) $(4pq+3q)^2 - (4pq-3q)^2 = 48pq^2$
(v) $(a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a) = 0$
Ans. (i) L.H.S. = $(3x+7)^2 - 84x$
 $= (3x)^2 + 2 \times 3x \times 7 + (7)^2 - 84x$
[Using identity $(a+b)^2 = a^2 + 2ab + b^2 - 1$
 $= 9x^2 + 42x + 49 - 84x$
 $= 9x^2 - 42x + 49$
 $= (3x-7)^2 F (a-b)^2 = a^2 - 2ab + b^2 - 1$
 $= R.H.S.$
(ii) L.H.S. = $(9p-5q)^2 + 180 pq$
 $= (9p)^2 - 2 \times 9p \times 5q + (5q)^2 + 180 pq$
[Using identity $(a-b)^2 = a^2 - 2ab + b^2 - 1$

$$= \$ lp^{1} - \$ 0pq + 25q^{1} + 1\$ 0pq$$

$$= \$ lp^{2} + 90pq + 25q^{2}$$

$$= (9p + 5q)^{2} \cdot (a + a)^{2} = a^{2} + 2ab + b^{2} - 1$$
(iii) L.H.S. = $\left(\frac{4}{3}m - \frac{3}{4}n\right)^{2} + 2mn$

$$= \left(\frac{4}{3}m\right)^{2} - 2 \times \frac{4}{3}m \times \frac{4}{4}n + \left(\frac{3}{4}n\right)^{2} + 2mn$$
(Using identity $(a + b)^{2} = a^{2} - 2ab + b^{2} - 1$

$$= \frac{16}{9}m^{2} - 2mn + \frac{9}{16}n^{2} + 2mn$$

$$= \frac{16}{9}m^{2} + \frac{9}{16}n^{2}$$
= R.H.S.
(iv) L.H.S. = $(4pq + 3q)^{2} - (4pq - 3q)^{2}$

$$= (4pq)^{2} + 2 \times 4pq \times 3q + (3q)^{2} - \left[(4pq)^{2} - 2 \times 4pq \times 3q + (3q)^{2}\right]$$
(Using identities $(a + b)^{2} = a^{2} + 2ab + b^{2}$ and $(a - b)^{2} = a^{2} - 2ab + b^{2}$

$$= 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - \left[16p^{2}q^{2} - 24pq^{2} + 9q^{2}\right] = 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - \left[16p^{2}q^{2} - 24pq^{2} + 9q^{2}\right] = 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - \left[16p^{2}q^{2} - 24pq^{2} + 9q^{2}\right] = 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - \left[16p^{2}q^{2} - 24pq^{2} + 9q^{2}\right] = 16p^{2}q^{2} + 24pq^{2} + 9q^{2} - \left[16p^{2}q^{2} + 24pq^{2} - 9q^{2}\right] = 48pq^{2}$$
= R.H.S.

(v) L.H.S.= $(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=a^2-b^2+b^2-c^2+c^2-a^2$

$$\begin{aligned} (1) & \text{Sign identity} \left(a - b \right) \left(a + b \right) = a^2 - b^2 \\ & = 0 \\ & = \text{R.H.S.} \end{aligned}$$

6. Using identities, evaluate:

(i) 71²

(ii) 99²

(iii) 102²

(iv) 998²

(v) 5.2²

(v) 297 × 303

(vII) 78 × 82

(vIII) 8.9²

(is) 10.5 × 9.5

Ans.(i) 71² = (70+1)²

= (70)² + 2 × 70 × 1+(1)²

Using identity (a + b)² = a² - 2ab + b² J

= 4900 + 140 + 1 = 5041

(ii) $99^2 = (100 - 1)^2$
$=(100)^2 - 2 \times 100 \times 1 + (1)^2$
[Using identity $(a-b)^2 = a^2 - 2ab + b^2$]
= 10000 - 200 + 1 = 9801
(iii) $102^2 = (100+2)^2$
$= (100)^{2} + 2 \times 100 \times 2 + (2)^{2}$
[Using identity $(a+b)^2 = a^2 + 2ab + b^2$]
= 10000 + 400 + 4 = 10404 (iv) $998^{2} = (1000 - 2)^{2}$
$=(1000)^2 - 2 \times 1000 \times 2 + (2)^2$
[Using identity $(a + b)^2 = a^2 - 2ab + b^2$
= 1000000 - 4000 + 4 = 996004
(v) $5.2^2 = (5+0.2)^2$
$=(5)^{2}+2\times5\times0.2+(0.2)^{2}$
[Using identity $(a+b)^2 = a^2 + 2ab + b^2$]
= 25 + 2.0 + 0.04 = 27.04
(vi) 297×303
$=(300 - 3) \times (300 + 3)$

$$= (300)^{2} - (3)^{2}$$
[Using identity $(a-b)(a+b) = a^{2} - b^{2}$]
= 90000 - 9 - 89991
(vii) 78 × 82 = $(80 - 2) \times (80 + 2)$
= $(80)^{2} - (2)^{2}$
[Using identity $(a-b)(a+b) = a^{2} - b^{2}$]
= $6400 - 4 - 6396$
(viii) $8.9^{2} = (8 + 0.9)^{2}$
= $(8)^{2} + 2 \times 8 \times 0.9 + (0.9)^{2}$
[Using identity $(a+b)^{2} = a^{2} + 2ab + b^{2}$]
= $64 + 14.4 + 0.81 = 79.21$
(ix) $10.5x9.5 - (10 + 0.5) \times (10 - 0.5)$
= $(10)^{2} - (0.5)^{2}$
[Using identity $(a-b)(a+b) = a^{2} - b^{2}$]
= $100 - 0.25 - 99.75$
7. Using $a^{2} - b^{2} = (a+b)(a-b)$, find
(i) $51^{2} - 49^{2}$

(ii)
$$(1.02)^2 - (0.98)^2$$

(iii) $153^2 - 147^2$
(iv) $12.1^2 - 7.9^2$
Ans.(i) $51^2 - 49^2 = (51 + 49)(51 - 49)$
[Using identity $(a - b)(a + b) = a^2 - b^2$]
 $= (1.02 + 0.98)(1.02 - 0.98)$
[Using identity $(a - b)(a + b) = a^2 - b^2$
 $= 2.00 \times 0.04 = 0.08$
(ii) $153^2 - 147^2 = (153 + 147)(153 - 147)$
[Using identity $(a - b)(a + b) = a^2 - b^2$]
 $= 300 \times 6 = 1800$
(iv) $12.1^2 - 7.9^2 = (12.1 + 7.9)(12.1 - 7.9)$
[Using identity $(a - b)(a + b) = a^2 - b^2$]
 $= 20.0 \times 4.2 = 84.0 = 84$

8. Using $(x+a)(x+b) = x^2 + (a+b)x + ab$, find	
(i) 103×104	
(ii) 5.1×5.2	
(iii) 103×98	
(iv) 9.7×9.8	
Ans. (i) $103 \times 104 = (100 + 3) \times (100 + 4)$	
$=(100)^{2}+(3+4)\times100+3\times4$	
[Using identity $(x+a)(x+b) = x^2 + (a+b)x + ab$]	
= 10000 + 7×100 + 12	
= 10000 + 700 + 12 = 10712	
(ii) $5.1 \times 5.2 = (5+0.1) \times (5+0.2)$	
$= (5)^{2} + (0.1+0.2) \times 5 + 0.1 \times 0.2$ [Using identity $(x+a)(x+b) = x^{2} + (a+b)x + ab$]	
$= 25 + 0.3 \times 5 + 0.02$	
= 25 + 1.5 + 0.02 = 26.52	
(iii) $103 \times 98 = (100 + 3) \times (100 - 2)$	
$=(100)^{2}+(3-2)\times100+3\times(-2)$	
[Using identity $(x+a)(x+b) = x^2 + (a+b)x + ab$]	
= 10000 + (3-2)×100 - 6	

$$= 10000 + 100 - 6 - 10094$$
(iv) 9.7 × 9.8 = (10 - 0.3) × (10 - 0.2)

$$= (10)^{2} + \{(-0.3) + (-0.2)\} \times 10 + (-0.3) \times (-0.2)$$
 [Using identity
(x+a)(x+b) = x^{2} + (a+b)x+ab1

$$= 100 + \{-0.3 - 0.2\} \times 10 + 0.06$$

$$= 100 - 5 + 0.06 = 95.06$$