CLASS-7

Chapter 9 Rational Numbers

SUB-MATHS

Ex. 9.1

Question I. List five rational numbers between:

- (i) -1 and 0
- (ii) $\!-2$ and -1
- (iii) $\frac{-4}{5}$ and $\frac{-2}{3}$
- (iv) $\frac{-1}{2}$ and $-\frac{2}{3}$

Answer: (i) -1 and 0

Let us write -1 and 0 as rational numbers with denominator 6. and 0 = $\frac{0}{6}$

$$\Rightarrow -1 = \frac{-6}{6}$$

$$\left| \therefore \frac{-6}{6} < \frac{-5}{6} < \frac{-4}{6} < \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0 \right|$$

$$\Rightarrow -1 < \frac{-5}{6} < \frac{-2}{3} < \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0$$

Therefore, five rational numbers between-1 and 0 would be

$$\frac{-5}{6}$$
, $\frac{-2}{3}$, $\frac{-1}{2}$, $\frac{-1}{3}$, $\frac{-1}{6}$

(ii).
$$-2$$
 and -1

Let us write_2 and_1 as rational numbers with denominator 6.

$$\Rightarrow$$
 $-2 = \frac{-12}{6}$ $-1 = \frac{-6}{6}$

$$\therefore \frac{-1}{3}, < \frac{-1}{6}, < 0, < \frac{1}{6}, < \frac{1}{3} <$$

$$\Rightarrow$$
 \blacksquare $<$ \blacksquare $<$ \blacksquare $<$ \blacksquare $<$ \blacksquare $<$

Therefore, five rational numbers between -2 and -1 would be

-11/6, -5/3, -3/2, -4/3, -7/6.

(iii)
$$\frac{-12}{6}$$
 and $\frac{-11}{6}$

Let us write $\frac{-10}{6}$ and $\frac{-9}{6}$ as rational numbers with the same denominators.

$$\Rightarrow \frac{-7}{6} = \frac{-6}{6}$$
 and $\frac{-11}{6} - 2\frac{-5}{3}$

$$\therefore \frac{-36}{45} < \frac{-35}{45} < \frac{-34}{45} < \frac{-33}{45} < \frac{-32}{45} < \frac{-31}{45} < \frac{-30}{45}$$

$$\Rightarrow \frac{-4}{5} < \frac{-7}{9} < \frac{-34}{45} < \frac{-11}{15} < \frac{-32}{45} < \frac{-31}{45} < \frac{-2}{3}$$

Therefore, five rational numbers between $\frac{-3}{2}$ and $\frac{-4}{3}$ would be

$$\frac{-7}{9}$$
, $\frac{-34}{45}$, $\frac{-11}{15}$, $\frac{-32}{45}$, $\frac{-31}{45}$, $\frac{-2}{3}$

(ii)
$$\frac{-7}{6}$$
 and $\frac{2}{3}$

Let us write $\frac{1}{5}$ and $\frac{-4}{5}$ as rational numbers with the same denominators

$$\Rightarrow \frac{-4}{5} = \frac{-2}{3}$$
 and $\frac{-4}{5} = \frac{-36}{45}$

$$\therefore \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{2}{6} < \frac{3}{6} < \frac{4}{6}$$

$$\Rightarrow \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3}$$

Therefore, five rational numbers between and $rac{-2}{3}$ would be $rac{-30}{45}$ $rac{-4}{5}$ $rac{-2}{3}$ $rac{-1}{2}$ $rac{-1}{2}$

Question 2. Write four more rational numbers in each of the following

patterns: (i)

(ii)
$$\frac{-3\times1}{5\times1}$$
 $\frac{-3\times2}{5\times2}$ $\frac{-3\times4}{5\times4}$,

(iii)
$$\frac{-1}{6}$$
, $\frac{2}{-12}$, $\frac{3}{-18}$, $\frac{4}{-24}$,

(iv)
$$\frac{-2}{3}$$
, $\frac{2}{-3}$, $\frac{4}{-6}$, $\frac{6}{-9}$,.....

Answer: (i) $\frac{-3}{5}$, $\frac{-6}{10}$, $\frac{-9}{15}$, $\frac{-12}{20}$,.....

$$\Rightarrow$$
 $\frac{-3\times3}{5\times3}$, $\frac{-3-6912}{12 \text{ T0 520}}$,

Therefore, the next four rational numbers of this pattern would be

$$\frac{-3\times5}{5\times5}$$
, $\frac{-3\times6}{5\times6}$, $\frac{-3\times7}{5\times7}$, $\frac{-3\times8}{5\times8}$ $=\frac{-15}{25}$, $\frac{-18}{30}$, $\frac{-21}{35}$, $\frac{-24}{40}$

$$(ii)\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots$$

$$\Rightarrow \frac{-1\times 1}{4\times 1}, \frac{-1\times 2}{4\times 2}, \frac{-1\times 3}{4\times 3}, \dots$$

Therefore, the next four rational numbers of this pattern would be

$$\frac{-1\times4}{4\times4}, \frac{-1\times5}{4\times5}, \frac{-1\times6}{4\times6}, \frac{-1\times7}{4\times7}$$
 $\frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28}$

$$(iii)^{-1}_{\overline{6}}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \dots$$

$$\Rightarrow rac{-1 imes 1}{6 imes 1}, rac{1 imes 2}{-6 imes 2}, rac{1 imes 3}{-6 imes 3}, rac{1 imes 4}{-6 imes 4}, \ldots$$

Therefore, the next four rational numbers of this pattern would be

$$\frac{1 \times 5}{-6 \times 5}, \frac{1 \times 6}{-6 \times 6}, \frac{1 \times 7}{-6 \times 7}, \frac{1 \times 8}{-6 \times 8} \quad = \frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48}$$

(iv)
$$\frac{-2}{3}$$
, $\frac{2}{-3}$, $\frac{4}{-6}$, $\frac{6}{-9}$,......

$$\Rightarrow rac{-2 imes 1}{3 imes 1}, rac{2 imes 1}{-3 imes 1}, rac{2 imes 2}{-3 imes 2}, rac{2 imes 3}{-3 imes 3}, \ldots$$

Therefore, the next four rational numbers of this pattern would be

$$\frac{2\times 4}{-3\times 4}, \frac{2\times 5}{-3\times 5}, \frac{2\times 6}{-3\times 6}, \frac{2\times 7}{-3\times 7} = \frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21}$$

Question 3. Give four rational numbers equivalent to:

(i)
$$\frac{-2}{7}$$

(ii)
$$\frac{5}{-3}$$

(iii)
$$\frac{4}{9}$$

Answer: (i) $\frac{-2}{7}$

$$\frac{10}{-6}$$
, $\Rightarrow \frac{20}{-12}$, $\frac{15}{-9}$ $\frac{25}{-15}$ $\frac{4}{18}$, $\Rightarrow \frac{16}{36}$, $\frac{12}{27}$ $\frac{20}{45}$ $\frac{3}{45}$

Therefore, four equivalent rational numbers are $\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$

(ii)
$$\frac{5}{-3}$$

$$= \frac{-2 \times 2 - 2 \times 3}{7 \times 2} = \frac{-4}{14}, \frac{-6}{21}, = \frac{-2 \times 4}{7 \times 4} = \frac{-8}{7 \times 4}.$$
Therefore, four equivalent rational numbers are $\frac{-8}{7 \times 5}, \frac{-10}{7 \times 5}, \frac{2 \times 5}{7 \times 5}$

. (iii)
$$\frac{5\times2}{-3\times2}$$

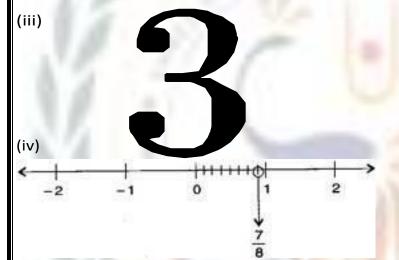
$$\frac{4\times 2}{9\times 2} = \frac{8}{18}, \frac{4\times 3}{9\times 3} = \frac{12}{27}, \frac{4\times 4}{9\times 4} = \frac{16}{36}, \frac{4\times 5}{9\times 5} = \frac{20}{45}$$

Therefore, four equivalent rational numbers are $\frac{15}{-9}$, $\frac{5 \times 420}{-3 \times 40}$, $\frac{5 \times 5}{-3 \times 5}$

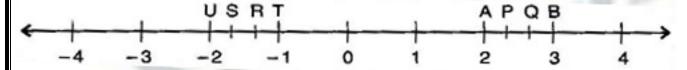
Question 4. Draw the number line and represent the following rational numbers on it:

(i)
$$\frac{25}{-15}$$

(ii)
$$\frac{-5}{8}$$


(iii)
$$\frac{-7}{4}$$

(iv)
$$\frac{7}{8}$$


Answer: (i)

(ii)

Question 5. The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S.

Answer: Each part which is between the two numbers is divided into 3 parts.

Therefore, A =
$$P = \frac{6}{3}$$
, $Q = \frac{3}{4} = \frac{7}{3}$, and $B = \frac{8}{3}$
Similarly $T = \frac{9}{3}$, $R = \frac{-3}{3}$, $S = \frac{-4}{3}$, and $U = \frac{-6}{3}$

Thus, the rational numbers represented $\stackrel{\bullet}{P}$ Q, R and S are $\frac{-5}{3}$ $\stackrel{\bullet}{\raise}$ $\frac{8}{3}$ and $\frac{-4}{3}$ respectively.

Question 6. Which of the following pairs represent the same rational numbers?

(i)
$$\frac{-7}{21}$$
 and $\frac{3}{9}$

(ii)
$$\frac{-16}{20}$$
 and $\frac{20}{-25}$

(iii)
$$\frac{-2}{-3}$$
 and $\frac{2}{3}$

(iv)
$$\frac{-3}{5}$$
 and $\frac{-12}{20}$

(v)
$$\frac{8}{-5}$$
 and $\frac{-24}{15}$

(vi)
$$\frac{1}{3}$$
 and $\frac{-1}{9}$

$$(vii)_{-9}^{-5} \quad and \quad \frac{5}{-9}$$

Answer: (i $\frac{-7}{21}$ and $\frac{3}{9}$

$$\Rightarrow \frac{-7}{21} = \frac{-1}{3}$$
 and $\frac{3}{9} = \frac{1}{3}$ [Converting into lowest term]

$$\frac{2}{3}\frac{2}{3}$$

$$\therefore \frac{-7}{21} \neq \frac{3}{9}$$

(ii)
$$\frac{-1}{3}$$
 and $\frac{20}{-25}$

$$\Rightarrow$$
 $\neq \frac{1}{3} = \frac{-16}{20}$ and $\frac{-16}{20} = \frac{-4}{5} = \frac{-4}{5}$

[Converting into lowest term]

$$\therefore \frac{20}{-25} = \frac{4}{-5}$$

$$\therefore \frac{-16}{20} = \frac{20}{-25}$$

(iii)
$$\frac{-4}{5}$$
 and $\frac{2}{3}$

$$\Rightarrow rac{-2}{-3} = rac{-4}{5}$$
 and $rac{-2}{-3} = rac{2}{3}$ [Converting into lowest term]

$$\therefore \frac{2}{3} = \frac{2}{3}$$

$$\therefore \frac{-2}{-3} = \frac{2}{3}$$

(iv)
$$\frac{-3}{5}$$
 and $\frac{-12}{20}$

$$\Rightarrow \frac{-3}{5} = \frac{-3}{5}$$
 and $\frac{-12}{20} = \frac{-3}{5}$ [Converting into lowest term]

$$\therefore \frac{-3}{5} = \frac{-3}{5}$$

$$\therefore \frac{-3}{5} = \frac{-12}{20}$$

$$(v)^{8}_{-5}$$
 and $\frac{-24}{15}$

$$\Rightarrow \frac{8}{-5} = \frac{-8}{5}$$
 and $\frac{-24}{15} = \frac{-8}{5}$ [Converting into lowest term]

$$\therefore \frac{-8}{5} = \frac{-8}{5}$$

$$\frac{8}{-5} = \frac{-24}{15}$$

(vi)
$$\frac{1}{3}$$
 and $\frac{-1}{9}$

$$\Rightarrow \frac{1}{3} = \frac{1}{3}$$
 and $\frac{-1}{9} = \frac{-1}{9}$ [Converting into lowest term]

$$\therefore \frac{-8}{6} \frac{25}{45}$$

$$\therefore \frac{1}{3} \neq \frac{-1}{9}$$

(vii)
$$\frac{1}{3}$$
 and $\frac{5}{-9}$

$$\Rightarrow \frac{-5}{-9} = \neq \frac{-1}{9} \text{nd} \frac{-5}{-9} = \frac{5}{9}$$
 [Converting into lowest term]

$$\sim \frac{5}{9}
eq \frac{5}{-9}$$

$$\therefore \frac{-5}{-9} \neq \frac{5}{-9}$$

Question 7. Rewrite the following rational numbers in the simplest form:

(i)
$$\frac{5}{-9}$$

(ii)
$$\frac{5}{9}$$

(iii)
$$\frac{-44}{72}$$

(iv)
$$\frac{-8}{10}$$

Answer: (i) $\frac{-8}{6} = \frac{-8 \div 2}{6 \div 2} = \frac{-4}{3}$ [H.C.F. of 8 and 6 is 2]

(ii)
$$\frac{25}{45} = \frac{25 \div 5}{45 \div 5} = \frac{5}{9}$$

[H.C.F. of 25 and 45 is5]

(iii)
$$\frac{-44}{72} = \frac{-44 \div 4}{72 \div 4} = \frac{-11}{18}$$
 [H.C.F. of 44 and 72 is 4]

(iv)
$$\frac{-8}{10} = \frac{-8 \div 2}{10 \div 2} = \frac{-4}{5}$$
 [H.C.F. of 8 and 10 is 2]

Question 8. Fill in the boxes with the correct symbol out of <, > and =:

$$(i)\frac{-5}{7}$$
 $\square \frac{2}{3}$

(ii)
$$\frac{-4}{5}$$
 $\Box \frac{-5}{7}$

(iii)
$$\frac{-7}{8} \Box \frac{14}{-16}$$

(iv)
$$\frac{-8}{5} \Box \frac{-7}{4}$$

(v)
$$\frac{1}{-3} \Box \frac{-1}{4}$$

(vi)
$$\frac{5}{-11} \square \frac{-5}{11}$$

(vii)
$$0 \underline{\qquad} \frac{-7}{6}$$

Answer: (i) $\frac{-5}{7}$ Since, the positive number if greater than negative number.

(ii)
$$\frac{-4\times7}{5\times7}$$
 $\frac{-5\times5}{7\times5}$ \Rightarrow $\frac{-28}{35}$ $\boxed{\begin{array}{c} -25\\ \hline 35 \end{array}}$ \Rightarrow $\frac{-4}{5}$ $\boxed{\begin{array}{c} -5\\ \hline 7 \end{array}}$

(iii)
$$\frac{-7\times2}{8\times2}$$
 $\Box \frac{14\times(-1)}{-16\times(-1)}$ $\Rightarrow \frac{-14}{16}$ $\Box \frac{-14}{16}$ $\Rightarrow \frac{-7}{8}$ $\Box \frac{14}{-16}$

(iv)
$$\frac{-8\times4}{5\times4}$$
 $\frac{-7\times5}{4\times5}$ \Rightarrow $\frac{-32}{20}$ \Rightarrow $\frac{-35}{20}$ \Rightarrow $\frac{-8}{5}$ \Rightarrow $\frac{-7}{4}$

$$(\mathsf{v})\frac{1}{-3}\Box\frac{-1}{4}\Rightarrow\frac{1}{-3}\boxed{<}\frac{-1}{4}$$

$$(vi)\frac{5}{-11}$$
 $\longrightarrow \frac{-5}{11}$ $\Longrightarrow \frac{5}{-11}$ $\Longrightarrow \frac{-5}{11}$

(vii) $0 > \frac{-7}{6}$ Since, 0 is greater than every negative number.

Question 9. Which is greater in each of the following:

(i)
$$\frac{2}{3}$$
, $\frac{5}{2}$

(ii)
$$\frac{-5}{6}$$
, $\frac{-4}{3}$

(iii)
$$\frac{-3}{4}, \frac{2}{-3}$$

(iv)
$$\frac{-1}{4}, \frac{1}{4}$$

(v)
$$-3\frac{2}{7}, -3\frac{4}{5}$$

Answer: (i)
$$\frac{2\times 2}{3\times 2}=\frac{4}{6}$$
 and $\frac{5\times 3}{2\times 3}=\frac{15}{6}$

Since
$$\frac{4}{6}$$
 $\boxed{}$

Therefore $\frac{2}{3}$ < $\frac{5}{2}$

$$\frac{-5\times 1}{6\times 1} = \frac{-5}{6}$$
 and $\frac{-4\times 2}{3\times 2} = \frac{-8}{6}$

Since
$$\frac{-5}{6}$$
 Therefore $\frac{-5}{6}$ $>$ $\frac{-4}{3}$

(ii)
$$\frac{-3\times 3}{4\times 3} = \frac{-9}{12}$$
 and $\frac{2\times (-4)}{-3\times (-4)} = \frac{-8}{12}$

Since
$$\frac{-9}{12}$$
 $\boxed{}$

Therefore
$$\frac{-3}{4}$$

 $(iii)^{\frac{-1}{4}}$ Since positive number is always greater than negative number.

(iv)
$$3\frac{2}{7} = \frac{-23}{7} = \frac{-23 \times 5}{7 \times 5} = \frac{-115}{35}$$
 and $3\frac{4}{5} = \frac{-19}{5} = \frac{-19 \times 7}{5 \times 7} = \frac{-133}{35}$

Since
$$\frac{-115}{35}$$
 $>$ $\frac{-133}{35}$

Therefore $-3\frac{2}{7}$ > $3\frac{4}{5}$

Question 10. Write the following rational numbers in ascending order:

$$(i)\frac{-3}{5},\frac{-2}{5},\frac{-1}{5}$$

(ii)
$$\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$$

(iii)
$$\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$$

Answer: (i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5} \Rightarrow \frac{-3}{5} < \frac{-2}{5} < \frac{-1}{5}$

(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3} \Rightarrow \frac{3}{9}, \frac{-2}{9}, \frac{-12}{9}$ [Converting into same denominator]

Now
$$\frac{-12}{9} < \frac{-2}{9} < \frac{3}{9} \Rightarrow \frac{-4}{3} < \frac{-2}{9} < \frac{1}{3}$$

(iii)
$$\frac{-3}{7}$$
, $\frac{-3}{2}$, $\frac{-3}{4}$

$$\Rightarrow \frac{\mathbf{5}}{\mathbf{3}} < \frac{-9}{10} < \frac{-3}{-11}$$

Ex. 9.2

Question I. Find thesum:

(i)
$$\frac{-3}{2} + \left(\frac{-11}{4}\right)$$

(ii)
$$\frac{-3}{4} + \frac{3}{5}$$

(iii)
$$\frac{-3}{7} + \frac{22}{15}$$

(iv)
$$\frac{5}{4} + \frac{5}{9}$$

$$(v)\frac{-8}{19} + \frac{(-2)}{57}$$

$$(vi)\frac{-2}{3} + 0$$

(vii)
$$-2\frac{1}{3} + 4\frac{3}{5}$$

Answer: (i) $\frac{5}{4} + \left(\frac{-11}{4}\right) = \frac{5-11}{4} = \frac{-6}{4} = \frac{-3}{2}$

(ii)
$$\frac{5}{3} + \frac{3}{5} = \frac{5 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3} = \frac{25}{15} + \frac{9}{15}$$

[L.C.M. of 3 and 5 is 15]

$$=\frac{25+9}{15}=\frac{34}{15}=2\frac{4}{15}$$

(iii)
$$\frac{-9}{10} + \frac{22}{15} = \frac{-9 \times 3}{10 \times 3} + \frac{22 \times 2}{15 \times 2} = \frac{-27}{30} + \frac{44}{30}$$

[L.C.M. of 10 and 15 is 30]

$$=\frac{-27+44}{30}=\frac{17}{30}$$

(iv)
$$\frac{-3}{-11}$$
 + $\frac{5}{9}$ = $\frac{-3 \times 9}{-11 \times 9}$ + $\frac{5 \times 11}{9 \times 11}$ = $\frac{27}{99}$ + $\frac{55}{99}$ [L.C.M. of 11 and 9 is 99]

$$=\frac{27+55}{99}=\frac{82}{99}$$

$$(v)\frac{-8}{19} + \frac{(-2)}{57} = \frac{-8\times3}{19\times3} + \frac{(-2)\times1}{57\times1} = \frac{-24}{57} + \frac{(-2)}{57}$$
 [L.C.M. of 19 and 57 is 57]

$$=\frac{-24-2}{57} = \frac{-26}{57}$$

(vi)
$$\frac{-2}{3} + 0 = \frac{-2}{3}$$

(vii)
$$-2\frac{1}{3} + 4\frac{3}{5} = \frac{-7}{3} + \frac{23}{5} = \frac{-7 \times 5}{3 \times 5} + \frac{23 \times 3}{5 \times 3} = \frac{-35}{15} + \frac{69}{15}$$
 [L.C.M. of 3 and 5 is 15]

$$=\frac{-35+69}{15}=\frac{34}{15}=2\frac{4}{15}$$

Question 2. Find:

$$(i)\frac{7}{24}-\frac{17}{36}$$

$$(ii)\frac{5}{63} - \left(\frac{-6}{21}\right)$$

(iii)
$$\frac{-6}{13} - \left(\frac{-7}{15}\right)$$

$$(iv)\frac{-3}{8}-\frac{7}{11}$$

$$(v)-2\frac{1}{9}-6$$

Answer: (i)
$$\frac{7}{24} - \frac{17}{36} = \frac{7 \times 3}{24 \times 3} - \frac{17 \times 2}{36 \times 2} = \frac{21}{72} - \frac{34}{72}$$

[L.C.M. of 24 and 36 is 72]

$$=\frac{21-34}{72} = \frac{-13}{72}$$

(ii)
$$\frac{5}{63} - \left(\frac{-6}{21}\right) = \frac{5\times1}{63\times1} - \left(\frac{-6\times3}{21\times3}\right) = \frac{5}{63} - \frac{-18}{63}$$
 [L.C.M. of 63 and 21 is 63]

$$=\frac{5-(-18)}{63} = \frac{5+18}{63} = \frac{23}{63}$$

(iii)
$$\frac{-6}{13} - \left(\frac{-7}{15}\right) = \frac{-6 \times 15}{13 \times 15} - \left(\frac{-7 \times 13}{15 \times 13}\right) = \frac{-90}{195} - \left(\frac{-91}{195}\right)$$
 [L.C.M. of 13 and 15 is 195]

$$=\frac{-90-(-91)}{195}=\frac{-90+91}{195}=\frac{1}{195}$$

(iv)
$$\frac{-3}{8} - \frac{7}{11} = \frac{-3 \times 11}{8 \times 11} - \frac{7 \times 8}{11 \times 8} = \frac{-33}{88} - \frac{56}{88}$$

[L.C.M. of 8 and 11 is 88]

$$=\frac{-33-56}{88} = \frac{-89}{88} = -1\frac{1}{88}$$

$$(v)-2\frac{1}{9}-6=\frac{-19}{9}-\frac{6}{1}=\frac{-19\times 1}{9\times 1}-\frac{6\times 9}{1\times 9}$$
 [L.C.M. of 9 and 1 is 9]

$$=\frac{-19}{9} - \frac{54}{9} = \frac{-19-54}{9} = \frac{-73}{9} = -8\frac{1}{9}$$

Question 3. Find the product:

(i)
$$\frac{9}{2} \times \left(\frac{-7}{4}\right)$$

(ii)
$$\frac{3}{10} imes \left(-9\right)$$

(iii)
$$\frac{-6}{5} imes \frac{9}{11}$$

$$(\mathsf{iv})rac{3}{7} imes\left(rac{-2}{5}
ight)$$

$$(\mathsf{v})\frac{3}{11} imes \frac{2}{5}$$

(vi)
$$rac{3}{-5} imesrac{5}{3}$$

Answer: (i)
$$\frac{9}{2} imes\left(\frac{-7}{4}\right)$$
 = $\frac{9 imes(-7)}{2 imes4}$ = $\frac{-63}{8}=-7\frac{7}{8}$

(ii)
$$\frac{3}{10} \times (-9) \stackrel{=}{=} \frac{3 \times (-9)}{10} \stackrel{=}{=} \frac{-27}{10} \stackrel{=}{=} -2\frac{7}{10}$$

(iii)
$$\frac{-6}{5} \times \frac{9}{11} = \frac{(-6) \times 9}{5 \times 11} = \frac{-54}{55}$$

(iv)
$$rac{3}{7} imes\left(rac{-2}{5}
ight)=rac{3 imes(-2)}{7 imes5}=rac{-6}{35}$$

$$(v)\frac{3}{11} imes \frac{2}{5} = \frac{3 imes 2}{11 imes 5} = \frac{6}{55}$$

$$(vi)\frac{3}{-5} \times \left(\frac{-5}{3}\right) = \frac{3 \times (-5)}{-5 \times 3} \mathbf{1}$$

Question 4. Find the value of:

(i)
$$(-4) \div \frac{2}{3}$$

(ii)
$$\frac{-3}{5} \div 2$$

$$\text{(iii)}\, \frac{-4}{5} \div \left(-3\right)$$

$$(\mathsf{iv})\frac{-1}{8} \div \frac{3}{4}$$

$$(v)\frac{-2}{13} \div \frac{1}{7}$$

$$(vi)\frac{-7}{12} \div \left(\frac{2}{13}\right)$$

$$(\mathsf{vii}) \frac{3}{13} \div \left(\frac{-4}{65}\right)$$

Answer: (i) $\left(-4\right)\div\frac{2}{3}$ = $\left(-4\right) imes\frac{3}{2}=\left(-2\right) imes3=-6$

(ii)
$$\frac{-3}{5} \div 2 = \frac{-3}{5} \times \frac{1}{2} = \frac{(-3)\times 1}{5\times 2} = \frac{-3}{10}$$

(iii)
$$\frac{-4}{5} \div (-3) = \frac{(-4)}{5} \times \frac{1}{(-3)} = \frac{(-4)\times 1}{5\times (-3)} = \frac{4}{15}$$

(iv)
$$\frac{-1}{8} \div \frac{3}{4} = \frac{-1}{8} \times \frac{4}{3} = \frac{(-1)\times 1}{2\times 3} = \frac{-1}{6}$$

$$(v)\frac{-2}{13} \div \frac{1}{7} = \frac{-2}{13} \times \frac{7}{1} = \frac{(-2)\times7}{13\times1} = \frac{-14}{13} = -1\frac{1}{13}$$

(vi)
$$\frac{-7}{12} \div \left(\frac{-2}{13}\right) = \frac{-7}{12} \times \frac{13}{(-2)} = \frac{(-7) \times 13}{12 \times (-2)} = \frac{-91}{24} = 3\frac{19}{24}$$

(vii)
$$\frac{3}{13} \div \left(\frac{-4}{65}\right) = \frac{3}{13} \times \frac{65}{(-4)} = \frac{3 \times (-5)}{1 \times 4} = \frac{-15}{4} = -3\frac{3}{4}$$